Поступление воды в организм. Все, что нужно знать о том, как переваривается разная пища


Большинство полезных веществ для поддержания жизнедеятельности человеческий организм получает через желудочно-кишечный тракт.

Однако обычные продукты, которые ест человек: хлеб, мясо, овощи – организм не может использовать напрямую для своих нужд. Для этого еду и напитки надо разделить на более мелкие составляющие – отдельные молекулы.

Эти молекулы переносятся кровью в клетки организма для строительства новых клеток и получения энергии.

Как пища переваривается?

Процесс пищеварения включает в себя смешивание пищи с желудочным соком и ее перемещение через желудочно-кишечный тракт. В ходе этого перемещения она разбирается на составляющие, которые используются на нужды организма.

Пищеварение начинается во рту – при пережевывании и глотании пищи. А заканчивается в тонком кишечнике.

Как пища движется по желудочно-кишечному тракту?

Большие полые органы желудочно-кишечного тракта – желудок и кишечник – имеют слой мышц, который приводит их стенки в движение. Это движение позволяет пище и жидкости продвигаться через пищеварительную систему и перемешиваться.

Сокращение органов желудочно-кишечного тракта называется перистальтика . Она похожа на волну, которая при помощи мышц движется вдоль всего пищеварительного тракта.

Мышцы кишечника создают суженный участок, который медленно движется вперед, проталкивая перед собой пищу и жидкость.

Как происходит пищеварение?

Пищеварение начинается еще в полости рта, когда пережевываемая пища обильно смачивается слюной. Слюна содержит в себе ферменты, начинающие расщепление крахмала.

Проглоченная пища попадает в пищевод , который соединяет между собой глотку и желудок . На стыке пищевода и желудка располагаются кольцевые мышцы. Это нижний сфинктер пищевода, который открывается при давлении проглоченной пищи и пропускает ее в желудок.

У желудка есть три основные задачи :

1. Хранение . Чтобы принять большой объем пищи или жидкости, мышцы верхней части желудка расслабляются. Это позволяет стенкам органа растягиваться.

2. Смешивание . Нижняя часть желудка сокращается, чтобы пища и жидкость смешивались с желудочным соком. Этот сок состоит из соляной кислоты и пищеварительных ферментов, которые помогают в расщеплении белков. Стенки желудка выделяют большое количество слизи, которая защищает их от воздействия соляной кислоты.

3. Транспортировка . Перемешанная пища поступает из желудка в тонкий кишечник.

Из желудка пища попадает в верхний отдел тонкого кишечника – двенадцатиперстную кишку . Здесь пища подвергается воздействию сока поджелудочной железы и ферментов тонкого кишечника , который способствует перевариванию жиров, белков и углеводов.

Здесь же пища обрабатывается желчью, которую производит печень. Между приемами пищи желчь хранится в желчном пузыре . Во время еды она выталкивается в двенадцатиперстно кишку, где смешивается с пищей.

Желчные кислоты растворяют жир в содержимом кишечника примерно так же, как моющие средства – жир со сковороды: они разбивают его на крошечные капельки. После того, как жир измельчен, он легко расщепляется ферментами на составляющие.

Вещества, которые получены из расщепленной ферментами пищи, всасываются через стенки тонкого кишечника.

Слизистая оболочка тонкого кишечника покрыта крошечными ворсинками, которые создают поверхность огромной площади, позволяющую поглощать большое количество питательных веществ.

Через специальные клетки эти вещества из кишечника попадают в кровь и с ней разносятся по всему организму – для хранения или использования.

Непереваренные части пищи поступают в толстый кишечник , в котором происходит всасывание воды и некоторых витаминов. После отходы пищеварения формируются в каловые массы и удаляются через прямую кишку .

Что нарушает работу желудочно-кишечного тракта?

Самое важное

Желудочно-кишечный тракт позволяет организму расщепить пищу до простейших соединений, из которых могут строиться новые ткани и получаться энергия.

Пищеварение происходит во всех отделах желудочно-кишечного тракта – от полости рта до прямой кишки.

Витамины - важнейшая группа незаменимых пищевых факторов. Они поступают в организм с растительными и животными продуктами, некоторые синтезируются в организме кишечными бактериями (энтерогенные витамины). Однако их доля значительно меньше пищевых. Являются абсолютно незаменимые компоненты пищи, поскольку они используются для синтеза в клетках организма коферментов, являющихся обязательной частью сложных ферментов.

Концентрация витаминов в тканях и суточная потребность в них невелики (от нескольких микрограммов до десятков и сотен миллиграммов), но при недостаточном поступлении витаминов в организм наступают характерные и опасные патологические изменения. Впервые наличие витаминов в пище было обнаружено русским врачом Н.И.Луниным (1880). В дальнейшем витамины были открыты при изучении таких заболеваний, как бери-бери, цинга и другие, о которых теперь известно, что они возникают вследствие недостачности витаминов. По выражению академика В. А. Энгельгардта, витамины обнаружили себя не своим присутствием в организме, а своим отсутствием.

Болезнь Аддисона - Бирмера (злокачественная анемия, пернициозная анемия) описана более 100 лет назад и долго считалась неизлечимой. Первые случаи выздоровления отмечены в 1926 г., когда для лечения применили сырую печень. Сразу же начались поиски вещества, содержащегося в печени и оказывающего лечебное действие. В 1948 г. это вещество - витамин В 12 - было выделено. Его содержание в печени оказалось очень небольшим - около 1 мкг в 1 г печени, т. е. 1/1 000000 часть веса печени. Семь лет спустя было выяснено строение витамина В 12 (кобаламина) (рис. 62).

Введение витамина В 12 быстро излечивает злокачественную анемию. Однако при этом выяснилось, что имеет значение способ введения: внутримышечные инъекции излечивают анемию, а прием витамина через рот не излечивает. Если же витамин В 12 принимать перорально вместе с желудочным соком, тоже наступает излечение.

Отсюда следует, что в желудочном соке содержится какое-то вещество, необходимое для усвоения витамина В 12 при его введении через рот. Это вещество (внутренний фактор, фактор Касла) сейчас выделено: им оказался гликопротеин, который у здоровых людей синтезируется в клетках желудка и секретируется в желудочный сок. Внутренний фактор избирательно связывает витамин В 12 (одна молекула витамина на одну молекулу белка); затем, уже в кишечнике, этот комплекс присоединяется к специфическим рецепторам мембраны энтероцитов, и происходит перенос витамина через их мембрану, т. е. всасывание.

Злокачественная анемия обычно развивается как осложнение гастрита, причем таких его форм, при которых резко снижается образование желудочного сока. Отсюда такие симптомы, как боли в области желудка, отсутствие аппетита. В желудке при этом нет внутреннего фактора и, следовательно, невозможно всасывание витамина В 12: витамин, содержащийся в пище, выводится с калом. Развитие анемии - это уже следствие недостатка витамина B 12 в тканях.

Витамин В 12 выполняет коферментные функции. В организме человека есть две коферментные формы витамина В 12 (кобаламина):

  1. метилкобаламин - в цитоплазме
  2. дезоксиаденозилкобаламин - в митохондриях.

В метилкобаламине вместо аденозильной группы, связанной с атомом кобальта (см. рис. 62), имеется метильная группа. В развитии анемии основная роль принадлежит дефициту метилкобаламина, который служит коферментом в реакциях трансметилирования. Реакции трансметилирования происходят, в частности, при синтезе нуклеотидов и нуклеиновых кислот. Поэтому при недостатке метилкобаламина синтез нуклеиновых кислот нарушается. Это проявляется прежде всего в тканях с интенсивной клеточной пролиферацией. К их числу относится и кроветворная ткань. Деление и созревание клеток эритроцитарного ряда нарушаются, размеры клеток превышают нормальные, значительная часть клеток - предшественников эритроцитов - разрушается еще в костном мозге, в циркулирующей крови количество эритроцитов резко уменьшено, размеры их увеличены. При отсутствии лечения наступают изменения и в других тканях, и болезнь заканчивается гибелью больного. Введение 100-200 мкг витамина В 12 ежедневно в течение примерно двух недель излечивает болезнь.

Другая коферментная форма витамина В 12 - дезоксиаденозилкобаламин - участвует в метаболизме метилмалоновой кислоты, которая получается в организме из жирных кислот с нечетным числом углеродных атомов, а также из аминокислот с разветвленной углеродной цепью. При дефиците витамина В 12 метил малоновая кислота накапливается в организме и в больших количествах выводится с мочой; ее определение в моче используется для диагностики злокачественной анемии.

Метилмалоновая кислота токсична для нервной ткани, и при отсутствии лечения вызывает дегенерацию заднебоковых столбов спинного мозга.

Единственным источником витамина B 12 в природе являются микроорганизмы, синтезирующие его из других веществ; через почву он попадает в растения, а с растениями в организмы животных. Для человека основным источником витамина В 12 служит животная пища. Наиболее богата витамином печень - около 100 мкг на 100 г печени; в говяжьем мясе содержится около 5 мкг витамина на 100 г мяса. Суточная потребность человека в этом витамине составляет 2,5-5 мкг.

Общая характеристика витаминов

Витамины принято обозначать буквами латинского алфавита по химическому строению или эффекту действия. В основу современной классификации витаминов положена их способность растворяться в воде и жире. Различают жирорастворимые (A, D, Е) и водорастворимые (B 1 , В 2 , В 6 , В 12 , С и др.) витамины. Характеристика основных витаминов приведена в таб. 12.4.

Таблица 12.4. Характеристики основных витаминов
Название Потребность в сутки Источники содержания Влияние Признаки недостаточности
Жирорастворимые витамины
Витамин А (ретинол) 1,5-2,5 мг Животные жиры, мясо, рыба, яйца Зрение, рост, размножение Нарушение сумеречного зрения, сухость кожи, поражение роговицы глаз (ксерофтальмия)
Витамин Д (кальциферол) 2,5 мкг Печень, рыба, икра, яйца Обмен кальция и фосфора Нарушение образования костей (рахит)
Витамин Е (токоферол) 10-20 мг Зеленые овощи, семена злаков, яйца, растительные масла Размножение, обмен веществ Атрофия скелетных мышц, бесплодие
Водорастворимые витамины
Витамин К (филлохинон) 0,2-0,3 мг Шпинат, салат, томаты, печень, синтезируются микрофлорой кишечника Свертывание крови витамины Кровоточивость, кровоизлияния
Витамин B 1 (тиамин) 1,3-2,6 мг Крупы, молочные продукты, яйца, фрукты Обмен веществ, функции желудка, сердца Поражение нервной системы (болезнь бери-бери)
Витамин В 2 (рибофлавин) 2-3 мг Крупы, дрожжи, овощи, молоко, мясо Обмен веществ, зрение, кроветворение Нарушение роста, поражение кожи
Витамин В 12 (цианкобаламин) 2-3 мкг Печень, почки, рыба, яйца, вырабатывается микроорганизмами Обмен веществ, кроветворение Малокровие (анемия)
Витамин С (аскорбиновая кислота) 60-100 мг Свежие фрукты, ягоды Обмен веществ, окислительно-восстановительные процессы Уменьшение прочности капилляров (кровоточивость, цинга)
В 3 , РР (никотиновая кислота) 15-25 мг Мясо, печень, хлеб грубого помола Обмен веществ в коже Пеллагра

Большинство витаминов входит в состав коферментов и именно по этой причине они необходимы организму. Витамин А служит кофактором белка неферментной природы - родопсина, или зрительного пурпура; этот белок сетчатки глаза участвует в восприятии света. Витамин D (точнее, его производное - кальцитриол) регулирует обмен кальция; по механизму действия он скорее сходен с гормонами - регуляторами обмена и функций организма. Как участвует в обмене веществ витамин Е (токоферол), остается не вполне ясным. Подробнее функции каждого из витаминов рассматриваются в других разделах.

Существует группа веществ, в строгом смысле не относящихся к витаминам (по механизму их участия в обмене веществ), но сходных с витаминами в том отношении, что при определенных условиях возникает их недостаточность: это так называемые витаминоподобные вещества. К ним относят пангамовую кислоту (витамин В 15), S-метилметионин (витамин U), инозит, холин и некоторые другие соединения.

Потребность в пангамовой кислоте и S-метилметионине возникает, вероятно, лишь при недостаточном содержании в пище незаменимой аминокислоты метионина. Оба эти вещества, как и метионин, содержат метальные группы, которые используются для синтеза ряда других соединений. S-Метилметионин применяется как эффективное лекарство при лечении язвенной болезни желудка.

Инозит и холин входят в состав сложных липидов; холин, кроме того, может также служить источником метальных групп при синтезе других соединений. Оба вещества в организме здорового человека синтезируются из глюкозы (инозит) или серина и метионина (холин) в необходимых количествах.

Гиповитаминозы. Состояния, при которых снижена концентрация витаминов в тканях организма, называют гиповитаминозами. Они возникают вследствие недостатка витаминов в пище или нарушения их всасывания в желудочно-кишечном тракте.

Гиповитаминозы клинически могут проявляться весьма характерным образом: при недостатке витамина В 12 развивается злокачественная анемия, витамина D - рахит, витамина С - цинга, витамина В 1 - бери-бери и т. д. Лечение гиповитаминозов сводится к введению витаминов (в состав пищи или лекарственных препаратов). При отсутствии лечения углубляющийся гиповитаминоз неизбежно приводит к летальному исходу.

Наиболее часто возникают легкие формы гиповитаминозов, не проявляющиеся как ясно выраженная болезнь. Их причиной обычно бывает общее нарушение питания, при этом возникает нехватка сразу многих витаминов. Такого рода гиповитаминозы нередки у городских жителей в конце зимы, вследствие недостаточного потребления овощей и сниженного количества витаминов в долго хранившихся продуктах.

Многие витамины синтезируются микроорганизмами, населяющими кишечник человека, и за счет этого источника удовлетворяется часть потребности организма человека в витаминах. При лечении антибиотиками, сульфаниламидами и другими лекарствами, угнетающими кишечную флору, может возникать гиповитаминоз. Поэтому при таком лечении одновременно назначают и витамины.

Бывают и наследcтвенные формы гиповитаминозов. Как уже отмечено, большинство витаминов входит в состав коферментов. Синтез коферментов осуществляется при участии ферментов, как и все химические превращения в организме. Если имеется наследственный дефект фермента, участвующего в превращении какого-либо витамина в кофермент, то возникает недостаточность этого кофермента. Она проявляется как недостаточность соответствующего витамина (гиповитаминоз), хотя концентрация витамина в тканях при этом может быть и высокой.

Гипервитаминозы. Избыточное потребление витаминов приводит к нарушениям обмена и функций организма, которые отчасти связаны со специфической ролью витамина в обмене веществ, отчасти носят характер неспецифического отравления. Гипервитаминозы возникают сравнительно редко, поскольку существуют механизмы устранения избытка витаминов из тканей, и лишь потребление больших количеств витамина может оказаться опасным.

Более других витаминов токсичны жирорастворимые витамины, особенно А и D. Известен, например, гипервитаминоз у новичков в Арктике, которые по неведению употребляют в пищу печень белого медведя (местные жители ее не едят): после небольшой порции возникают головная боль, рвота, расстройство зрения и даже может наступить смерть. Это связано с высоким содержанием витамина А в печени белого медведя: несколько граммов печени могут удовлетворить годовую потребность человека в этом витамине.

Происхождение витаминов. В растениях синтезируются все органические вещества, составляющие их ткани, в том числе витамины (за исключением витамина В 12), а также и все аминокислоты (незаменимых аминокислот для них не существует). Многие микроорганизмы тaкже не нуждаются во внешних источниках этих веществ. Из организмы животных витамины и незаменимые аминокислоты поступают главным образом из растений, у травоядных - непосредственно, у хищников - в результате питания травоядными. Витамин В 12 синтезируется только микроорганизмами. Особенно активно образуют витамин В 12 микроорганизмы, населяющие рубец жвачных животных и размножающиеся также и в навозе: в сточных водах скотных дворов концентрация витамина В 12 может быть в 1000 раз больше, чем в печени животных.

При эволюции гетеротрофных организмов, пища которых содержала готовые витамины и аминокислоты, отпала необходимость образовывать собственные ферменты для синтеза многих из этих веществ, и соответствующие гены были утрачены. При этом достигаются упрощение метаболической системы и экономия ресурсов клетки. Одновременно возникает зависимость организма от внешних источников этих веществ, которые становятся незаменимыми пищевыми факторами. Набор незаменимых пищевых факторов для разных видов животных различен.

Например, аскорбиновая кислота (витамин С) является витамином для человека, обезьян, морской свинки, а собаки, крысы и многие другие животные не нуждаются в ней: аскорбиновая кислота синтезируется в их организме из глюкозы. Cинтез витамина РР происходит почти у всех организмов, начиная от растений и до человека; его предшественником служит триптофан. Однако у человека скорость синтеза недостаточна, чтобы удовлетворить полностью потребность организма в этом витамине. У кошек витамин РР совсем не синтезируется.

В настоящее время под питанием понимается сложный процесс поступления, переваривания, всасывания и усвоения в организме веществ (нутриентов), необходимых для удовлетворения энергетических и пластических потребностей организма, в том числе регенерации клеток и тканей, регуляции различных функций организма. Пищеварением называется совокупность физико-химических и физиологических процессов, обеспечивающих расщепление поступающих в организм сложных пищевых веществ на простые химические соединения, способные всасываться и усваиваться в организме.

Не вызывает сомнений тот факт, что поступающая в организм извне пища, обычно состоящая из нативного полимерного материала (белки, жиры, углеводы), должна быть деструктурирована и гидролизована до таких элементов, как аминокислоты, гексозы, жирные кислоты и т. д., которые непосредственно участвуют в процессах метаболизма. Превращение исходных веществ в резорбируемые субстраты происходит поэтапно в результате гидролитических процессов, проходящих с участием различных ферментов.

Последние достижения в области фундаментальных исследований работы пищеварительной системы существенно изменили традиционные представления о деятельности "пищеварительного конвейера". В соответствии с современной концепцией под пищеварением понимаются процессы ассимиляции пищи от ее поступления в желудочно-кишечный тракт до включения во внутриклеточные метаболические процессы.

Многокомпонентная система пищеварительного конвейера состоит из следующих этапов:

1. Поступление пищи в ротовую полость, ее измельчение, смачивание пищевого комка и начало полостного гидролиза. Преодоление глоточного сфинктера и выход в пищевод.

2. Поступление пищи из пищевода через кардиальный сфинктер в желудок и временное ее депонирование. Активное перемешивание пищи, ее перетирание и измельчение. Гидролиз полимеров желудочными ферментами.

3. Поступление пищевой смеси через антральный сфинктер в двенадцатиперстную кишку. Перемешивание пищи с желчными кислотами и ферментами поджелудочной железы. Гомеостазирование и формирование химуса с участием кишечной секреции. Гидролиз в полости кишки.

4. Транспорт полимеров, олиго- и мономеров через пристеночный слой тонкой кишки. Гидролиз в пристеночном слое, осуществляемый панкреатическими и энтероцитарными ферментами. Транспорт нутриентов в зону гликокаликса, сорбция - десорбция на гликокаликсе, связывание с акцепторными гликопротеидами и активными центрами панкреатических и энтероцитарных ферментов. Гидролиз нутриентов в щеточной кайме энтероцитов (мембранное пищеварение). Доставка продуктов гидролиза к основанию микроворсинок энтероцитов в зону образования эндоцитозных инвагинаций (с возможным участием сил полостного давления и капиллярных сил).

5. Перенос нутриентов в кровеносные и лимфатические капилляры путем микропиноцитоза, а также диффузии через фенестры эндотелиальных клеток капилляров и по межклеточному пространству. Поступление нутриентов через портальную систему в печень. Доставка пищевых веществ лимфо- и кровотоком в ткани и органы. Транспорт нутриентов через мембраны клеток и их включение в пластические и энергетические процессы.

Какова же роль различных отделов пищеварительного тракта и органов в обеспечении процессов переваривания и всасывания нутриентов?

В полости рта происходит механическое размельчение пищи, смачивание слюной и подготовка ее к дальнейшему транспорту, который обеспечивается тем, что пищевые нутриенты превращаются в более или менее однородную массу. Движениями, в основном, нижней челюсти и языка формируется пищевой комок, который затем проглатывается и, в большинстве случаев, очень быстро достигает полости желудка. Химическая обработка пищевых веществ в ротовой полости, как правило, не имеет большого значения. Хотя слюна содержит целый ряд ферментов, их концентрация очень невелика. Лишь амилаза может играть определенную роль в предварительном расщеплении полисахаридов.

В полости желудка пища задерживается и затем медленно, небольшими порциями перемещается в тонкую кишку. По-видимому, основная функция желудка - депонирующая. Пища быстро накапливается в желудке и затем постепенно утилизируется организмом. Это подтверждается большим числом наблюдений над больными с удаленным желудком. Основным нарушением, характерным для этих больных, является не выключение собственно пищеварительной деятельности желудка, а нарушение депонирующей функции, то есть постепенной эвакуации пищевых веществ в кишечник, что проявляется в виде так называемого "демпинг-синдрома". Пребывание пищи в желудке сопровождается ферментативной обработкой, при этом желудочный сок содержит ферменты, осуществляющие начальные стадии расщепления белков.

Желудок рассматривается как орган пепсинно-кислотного пищеварения, так как это единственный отдел пищеварительного канала, где ферментативные реакции проходят в резко кислой среде. Железы желудка выделяют несколько протеолитических ферментов. Наиболее важными из них являются пепсины и, кроме того, химозин и парапепсин, которые осуществляют дезагрегацию белковой молекулы и лишь в небольшой степени расщепление пептидных связей. Большое значение имеет, по-видимому, действие соляной кислоты на пищу. Во всяком случае, кислая среда желудочного содержимого не только создает оптимальные условия для действия пепсинов, но и способствует денатурации белков, вызывает набухание пищевой массы, увеличивает проницаемость клеточных структур, тем самым благоприятствуя последующей пищеварительной обработке.

Таким образом, слюнные железы и желудок играют весьма ограниченную роль в переваривании и расщеплении пищи. Каждая из упомянутых желез по сути осуществляет воздействие на один из видов пищевых веществ (слюнные железы - на полисахариды, желудочные - на белки), причем в ограниченных пределах. В то же время поджелудочная железа выделяет самые разнообразные ферменты, которые осуществляют гидролиз всех пищевых веществ. Поджелудочная железа воздействует с помощью вырабатываемых ею ферментов на все виды нутриентов (белки, жиры, углеводы).

Ферментативное действие секрета поджелудочной железы реализуется в полости тонкой кишки, и уже один этот факт заставляет считать, что кишечное пищеварение является наиболее существенным этапом в переработке пищевых веществ. Сюда же, в полость тонкой кишки, попадает и желчь, которая вместе с панкреатическим соком осуществляет нейтрализацию кислого желудочного химуса. Ферментативная активность желчи невелика и, в общем, не превышает ту, что обнаруживается в крови, моче и других непищеварительных жидкостях. Вместе с тем желчь и, в особенности, ее кислоты (холевая и дезоксихолевая) выполняют ряд важных пищеварительных функций. Известно, в частности, что желчные кислоты стимулируют деятельность некоторых панкреатических ферментов. Наиболее отчетливо это доказано в отношении панкреатической липазы, в меньшей степени это касается амилазы и протеаз. Кроме того, желчь стимулирует перистальтику кишечника и, по-видимому, обладает бактериостатическим действием. Но наиболее важно участие желчи во всасывании нутриентов. Желчные кислоты необходимы для эмульгирования жиров и для всасывания нейтральных жиров, жирных кислот и, возможно, других липидов.

Принято считать, что кишечное полостное пищеварение - это процесс, который осуществляется в просвете тонкой кишки под влиянием, главным образом, секрета поджелудочной железы, желчи и кишечного сока. Внутрикишечное пищеварение осуществляется за счет слияния части транспортных везикул с лизосомами, цистернами эндоплазматической сети и комплекса Гольджи. Предполагается участие нутриентов во внутриклеточном метаболизме. Происходит слияние транспортных везикул с базолатеральной мембраной энтероцитов и выход содержимого везикул в межклеточное пространство. Тем самым достигается временное депонирование нутриентов и их диффузия по градиенту концентрации через базальную мембрану энтероцитов в собственную пластинку слизистой оболочки тонкой кишки.

Интенсивное изучение процессов мембранного пищеварения позволило достаточно полно охарактеризовать деятельность пище-варительно-транспортного конвейера в тонкой кишке. Согласно сложившимся на сегодня представлениям, ферментативный гидролиз пищевых субстратов последовательно осуществляется в полости тонкой кишки (полостное пищеварение), в надэпителиальном слое слизистых наложений (пристеночное пищеварение), на мембранах щеточной каймы энтероцитов (мембранное пищеварение) и после проникновения не полностью расщепленных субстратов внутрь энтероцитов (внутриклеточное пищеварение).

Начальные стадии гидролиза биополимеров осуществляются в полости тонкой кишки. При этом пищевые субстраты, не подвергшиеся гидролизу в кишечной полости, и продукты их начального и промежуточного гидролиза диффундируют сквозь неперемешивае-мый слой жидкой фазы химуса (автономный примембранный слой) в зону щеточной каймы, где осуществляется мембранное пищеварение. Крупномолекулярные субстраты гидролизуются панкреатическими эндогидролазами, адсорбированными преимущественно на поверхности гликокаликса, а продукты промежуточного гидролиза - экзогидролазами, транслоцированными на внешней поверхности мембран микроворсинок щеточной каймы. Благодаря сопряженности механизмов, осуществляющих заключительные стадии гидролиза и начальные этапы транспорта через мембрану, продукты гидролиза, образующиеся в зоне мембранного пищеварения, всасываются и поступают во внутреннюю среду организма.

Переваривание и всасывание основных нутриентов осуществляется следующим образом.

Переваривание белков в желудке происходит при превращении в кислой среде пепсиногенов в пепсины (оптимальный рН 1,5-3,5). Пепсины расщепляют связи между ароматическими аминокислотами, соседствующими с карбоксильными аминокислотами. Они инактивируются в щелочной среде, расщепление пептидов пепсинами прекращается после поступления химуса в тонкую кишку.

В тонкой кишке полипептиды подвергаются дальнейшему расщеплению протеазами. В основном расщепление пептидов осуществляется панкреатическими ферментами: трипсином, химотрипсином, эластазой и карбоксипептидазами А и В. Энтерокиназа переводит трипсиноген в трипсин, который затем активирует и другие протеазы. Трипсин расщепляет полипептидные цепочки в местах соединений основных аминокислот (лизина и аргинина), в то время как химотрипсин разрушает связи ароматических аминокислот (фенилала-нина, тирозина, триптофана). Эластаза расщепляет связи алифатических пептидов. Эти три фермента являются эндопептидазами, поскольку гидролизуют внутренние связи пептидов. Карбоксипеп-тидазы А и В представляют собой экзопептидазы, так как отщепляют только концевые карбоксильные группы преимущественно нейтральных и основных аминокислот соответственно. При протеолизе, осуществляемом панкреатическими ферментами, происходит отщепление олигопептидов и некоторых свободных аминокислот. Микроворсинки энтероцитов имеют на своей поверхности эндопептидазы и экзопептидазы, которые расщепляют олигопептиды до аминокислот, ди- и трипептидов. Всасывание ди- и трипептидов осуществляется с помощью вторичного активного транспорта. Эти продукты затем расщепляются до аминокислот внутриклеточными пептидазами энтероцитов. Аминокислоты абсорбируются по принципу механизма ко-транспорта с натрием на апикальном участке мембраны. Последующая диффузия через базолатеральную мембрану энтероцитов происходит против градиента концентрации, и аминокислоты попадают в капиллярное сплетение кишечных ворсинок. По типам переносимых аминокислот различают: нейтральный транспортер (переносящий нейтральные аминокислоты), основной (переносящий аргинин, лизин, гистидин), дикарбоксильный (транспортирующий глутамат и аспартат), гидрофобный (транспортирующий фенилаланин и метионин), иминотранспортер (переносящий пролин и гидроксипролин).

В кишечнике расщепляются и всасываются только те углеводы, на которые действуют соответствующие ферменты. Непереваривае-мые углеводы (или пищевые волокна) не могут быть ассимилированы, поскольку для этого нет специальных ферментов. Однако возможен их катаболизм бактериями толстой кишки. Углеводы пищи состоят из дисахаридов: сахарозы (обычный сахар) и лактозы (молочный сахар); моносахаридов - глюкозы и фруктозы; растительных крахмалов - амилозы и амилопектина. Еще один углевод пищи - гликоген - является полимером глюкозы.

Энтероциты не способны транспортировать углеводы размером больше, чем моносахариды. Поэтому большая часть углеводов должна расщепляться перед всасыванием. Под действием амилазы слюны образуются ди- и триполимеры глюкозы (соответственно мальтоза и мальтотриоза). Амилаза слюны инактивируется в желудке, так как оптимальный рН для ее активности составляет 6,7. Панкреатическая амилаза продолжает гидролиз углеводов до мальтозы, мальтотриозы и концевых декстранов в полости тонкой кишки. Микроворсинки энтероцитов содержат ферменты, расщепляющие олиго- и дисахариды до моносахаридов для их абсорбции. Глюкоамилаза расщепляет связи на нерасщепленных концах олигосахаридов, которые образовались при расщеплении амилопектина амилазой. В результате этого образуются наиболее легко расщепляемые тетрасахариды. Сахаразно-изомальтазный комплекс имеет два каталитических участка: один с сахаразной активностью, другой - с изомальтазной. Изомальтазный участок переводит тетрасахариды в мальтотриозу. Изомальтаза и сахараза отщепляют глюкозу от нередуцированных концов мальтозы, мальтотриозы и концевых декстранов. При этом сахараза расщепляет дисахарид сахарозу до фруктозы и глюкозы. Кроме того, на микроворсинках энтероцитов также имеется лактаза, которая расщепляет лактозу до галактозы и глюкозы.

После образования моносахаридов начинается их абсорбция. Глюкоза и галактоза транспортируются в энтероциты вместе с натрием посредством транспортера "натрий-глюкоза", при этом всасывание глюкозы значительно возрастает в присутствии натрия и нарушается в его отсутствие. Фруктоза же поступает в клетку через апикальный участок мембраны путем диффузии. Галактоза и глюкоза проходят через базолатеральный участок мембраны с помощью переносчиков, механизм выхода фруктозы из энтероцитов менее изучен. Моносахариды поступают через капиллярное сплетение ворсинок в воротную вену и далее в кровоток.

Жиры в пище представлены в основном триглицеридами, фосфолипидами (лецитином) и холестерином (в виде его эфиров). Для полноценного переваривания и всасывания жиров необходимо сочетание нескольких факторов: нормальной работы печени и желчевыводящих путей, наличия панкреатических ферментов и щелочного рН, нормального состояния энтероцитов, лимфатической системы кишечника и регионарной кишечно-печеночной циркуляции. Отсутствие любого из этих компонентов приводит к нарушению всасывания жиров и стеаторее.

В основном переваривание жиров происходит в тонкой кишке. Однако начальный процесс липолиза может проходить в желудке под действием желудочной липазы при оптимальном значении рН 4-5. Липаза желудка расщепляет триглицериды до жирных кислот и диглицеридов. Она устойчива к воздействию пепсина, однако разрушается под действием протсаз поджелудочной железы в щелочной среде двенадцатиперстной кишки, ее активность снижается также под действием солей желчных кислот. Желудочная липаза имеет небольшое значение по сравнению с панкреатической липазой, хотя обладает некоторой активностью, особенно в антральном отделе, где при механическом перемешивании химуса образуются мельчайшие жировые капли, что повышает площадь поверхности переваривания жиров.

После попадания химуса в двенадцатиперстную кишку происходит дальнейший липолиз, включающий несколько последовательных стадий. Сначала триглицериды, холестерин, фосфолипиды и продукты расщепления липидов желудочной липазой сливаются в мицеллы под действием желчных кислот, мицеллы стабилизируются фосфолипидами и моноглицеридами в щелочной среде. Затем колипаза, секретируемая поджелудочной железой, воздействует на мицеллы и служит точкой приложения действия панкреатической липазы. В отсутствие колипазы панкреатическая липаза обладает слабой липолитической активностью. Связывание колипазы с мицеллой улучшается в результате воздействия панкреатической фосфолипазы А на лецитин мицелл. В свою очередь, для активации фосфолипазы А и образования лизолецитина и жирных кислот необходимо наличие солей желчных кислот и кальция. После гидролиза лецитина триглицериды мицелл становятся доступными для переваривания. Затем панкреатическая липаза прикрепляется к соединению "колипаза-мицелла" и гидролизует 1- и 3-связи триглицеридов, образуя моноглицерид и жирную кислоту. Оптимальный рН для панкреатической липазы составляет 6,0-6,5. Другой фермент - панкреатическая эстераза - гидролизует связи холестерина и жирорастворимых витаминов с эфирами жирной кислоты. Основными продуктами расщепления липидов под действием панкреатической липазы и эстеразы являются жирные кислоты, моноглицериды, лизолецитин и холестерин (неэстерифицированный). Скорость поступления гидрофобных веществ в микроворсинки зависит от их солюбилизации в мицеллах в просвете кишки.

Жирные кислоты, холестерин и моноглицериды поступают в энтероциты из мицелл путем пассивной диффузии; хотя жирные кислоты с длинной цепью могут переноситься и с помощью поверхностного связывающего протеина. Поскольку эти компоненты жирорастворимы и гораздо мельче, чем непереваренные триглицериды и эфиры холестерина, они легко проходят через мембрану энтероцита. В клетке жирные кислоты с длинной цепью (более 12 атомов углерода) и холестерин переносятся связывающими протеинами в гидрофильной цитоплазме к эндоплазматическому ретикулуму. Холестерин и жирорастворимые витамины переносятся стерольным белком-переносчиком к гладкому эндоплазматическому ретикулуму, где холестерин реэстерифицируется. Жирные кислоты с длинной цепью транспортируются через цитоплазму специальным белком, степень их поступления в шероховатый эндоплазматический ретикулум зависит от количества жиров в пище.

После ресинтеза эфиров холестерина, триглицеридов и лецитина в эндоплазматическом ретикулуме они образуют липопротеины, соединяясь с аполипопротеинами. Липопротеины делят по размеру, по содержанию в них липидов и по типу апопротеинов, входящих в их состав. Хиломикроны и липопротеины очень низкой плотности имеют больший размер и состоят, в основном, из триглицеридов и жирорастворимых витаминов, тогда как липопротеины низкой плотности имеют меньший размер и содержат преимущественно эсте-рифицированный холестерин. Липопротеины высокой плотности - самые маленькие по размеру и содержат, главным образом, фосфолипиды (лецитин). Сформированные липопротеины выходят через базолатеральную мембрану энтероцитов в везикулах, далее они поступают в лимфатические капилляры. Жирные кислоты со средней и короткой цепью (содержащие менее 12 атомов углерода) могут прямо поступать в систему воротной вены из энтероцитов без образования триглицеридов. Кроме того, жирные кислоты с короткой цепью (бутират, пропионат и др.) образуются в толстой кишке из непереваренных углеводов под действием микроорганизмов и являются важным источником энергии для клеток слизистой оболочки толстой кишки (колоноцитов).

Подытоживая представленные сведения, следует признать, что знания физиологии и биохимии пищеварения позволяют оптимизировать условия проведения искусственного (энтерального и перорального) питания, опираясь на основные принципы деятельности пищеварительного конвейера.

Питание — важнейшая вещь для каждого человека. Организм нуждается в огромном количестве химических веществ. Они регулируют его работу и являются строительным материалом для новых клеток. Неправильное питание — причина большинства заболеваний, терроризирующих современного человека. Поэтому информация о том, как работает пищеварение, будет полезна каждому, независимо от вкусов и предпочтений. Давайте узнаем, где происходит всасывание питательных веществ в организме человека.

Ротовая полость

Полезные микроэлементы из пищи начинают усваиваться ещё во рту. Во время приёма еды выделяется слюна, которая содержит в себе ферменты, помогающие расщепить сложные вещества. Находясь во рту, пища пропитывается слюной и превращается в более-менее однородную массу. К сожалению, она находится в ротовой полости в течение короткого промежутка времени, поэтому поступления питательных веществ на этой стадии незначительны. Чтобы изменить эту досадную тенденцию, нужно долго и тщательно пережёвывать пищу. Все знают об этом, но практически никто не следует этому простому правилу.

Раз из ротовой полости почти не поступают в кровь, то эта стадия пищеварения бесполезна? Ни в коем случае! Слюна, которой пропитывается еда, принимает активное участие в процессах пищеварения, проходящих в желудке. Поэтому не стоит недооценивать важность пищеварительных трансформаций, которые происходят во рту.

Желудок

Одно из мест, где питательные вещества поступают в кровь, — желудок. Измельчённая и пропитанная слюной пища проходит через пищевод и оказывается в этом органе, где её ждёт следующая стадия пищеварительного процесса. Желудок вырабатывает соляную кислоту, слизь и ферменты. Именно в его глубинах всасывается основное количество воды, а также минералы и аминокислоты, которые уже успели расщепиться. Некоторое количество глюкозы тоже всасывается в желудке.

Алкоголь, как многие убедились на собственном опыте, тоже усваивается именно здесь. Поэтому, если принимать его на голодный желудок, то эффект наступает быстро, что частенько приводит к плачевным последствиям. Если же употребление алкогольных напитков проходит вместе с приёмом пищи, то ядовитое вещество медленнее усваивается, и эффект проявляется не так стремительно и беспощадно.

Тонкий кишечник

Основное место, где происходит всасывание питательных веществ в кровь, — это кишечник. Именно он является главным в котором функционируют наиболее важные процессы. В тонком кишечнике происходит наиболее интенсивное и эффективное усвоение полезных элементов из пищи. Этим он обязан своему строению — поверхность тонкой кишки покрыта легионами ворсинок, что увеличивает площадь поглощения в сотни раз. Благодаря такой конструкции основные питательные вещества поступают в кровь через ворсинки При их сокращении усвоенные элементы попадают в кровь, а во время расслабления свободное место заполняется новой порцией веществ. Также ворсинки способствуют механическому продвижению пищи по кишечнику.

В толстой кишке проходит заключительный этап пищеварительной цепочки. Здесь усваиваются остатки воды, некоторые мономеры и витамины, а также соли. Если предыдущие этапы усвоения пищи прошли хорошо, то в толстый кишечник попадает масса, почти лишённая питательных веществ. Поэтому после финального этапа усвоения из остатков пищи будут сформированы каловые массы, которые проследуют к выходу.

Кишечник — не только место, где питательные вещества поступают в кровь. На самом деле именно он отвечает за иммунитет человека. Помимо этого, микрофлора, обитающая в кишечнике, вырабатывает витамины группы В, витамин К, а также некоторые аминокислоты, многие из которых признаны незаменимыми. Развитие полезной микрофлоры и уничтожение патогенной — важная задача в деле сохранения здоровья.

Микрофлора

Полезные бактерии, населяющие кишечник, являются жизненно необходимыми обитателями нашего организма. Они являются ключевым звеном иммунной системы, без которого немыслима нормальная работа защитных механизмов. Также многие незаменимые вещества, участвующие в построении новых клеток, вырабатываются именно благодаря микроорганизмам, населяющим наш кишечник.

Логично было бы заботиться о драгоценной микрофлоре, всячески её оберегать и подкармливать. Но большинство людей совершают прямо противоположные действия, прикладывая уйму усилий для уничтожения полезных микроорганизмов. Более того, они не только убивают полезные бактерии, но и создают в кишечнике условия, идеально подходящие для зарождения патогенной микрофлоры. Такое положение дел вызвано тем, что современный человек употребляет в пищу продукты, не являющиеся едой. Например, полуфабрикаты, фастфуды, всевозможные закуски, щедро посыпанные химикатами.

Загрязнение кишечника

Чтобы держать в чистоте место, где питательные вещества поступают в кровь, нужно питаться здоровой пищей, не употреблять за один приём Например, не стоит совмещать белковую пищу с углеводной, молочные продукты лучше есть отдельно от всего, как и фрукты. Также не будет лишним ввести побольше овощей в свой рацион. Волокна, из которых они состоят, пройдут по кишечнику, удаляя нечистоты, скопившиеся на его стенках.

Что происходит с питательными веществами?

После попадания в кровь полезные вещества и микроэлементы начинают разноситься в клетки тканей, составляющих наш организм. Там они принимают участие в обмене веществ, или метаболизме. Обменные процессы невероятно важны для поддержания нашей жизнедеятельности, так как именно благодаря им образуются необходимые белки, аминокислоты и другие кирпичики, из которых построено человеческое тело. Стройматериалы проходят долгий путь от места, где происходит всасывание питательных веществ у человека, до каждого органа, любой клеточки нашего организма.

Слаженный и гармоничный обмен веществ закладывает прочный фундамент для построения здорового тела. Тот человек, чей метаболизм в порядке, имеет крепкое здоровье, массу энергии и хорошее настроение. Если же этот процесс будет нарушен, то проблемы не заставят себя долго ждать. Это может привести к нарушениям в работе эндокринной системы, подагре, избытку холестерина, нарушению психического развития и многим другим нехорошим вещам.

Важность усвоения пищи

Важность мест, где питательные вещества поступают в кровь, трудно переоценить. Здоровье всего организма зависит от их слаженной и гармоничной работы. Если возникнет проблема с желудком или с кишечником, то строительные материалы для обновления клеток перестанут поступать. А это чревато массой проблем как с физическим здоровьем, так и с психическим.

Задача человека — всеми возможными способами помогать этим жизненно важным процессам или хотя бы не мешать им. Питайтесь здоровой пищей, и ваша жизнь засияет новыми красками!

Неплохо, наверное, иметь некоторое представстенение о строении нашей пищеварительной системы и о том, что же происходит с едой «внутри»

Неплохо, наверное, иметь некоторое представстенение о строении нашей пищеварительной системы и о том, что же происходит с едой «внутри».

Человек, умеющий вкусно готовить, но не знающий, какая судьба ожидает его блюда после того, как они съедены, уподобляется автолюбителю, который выучил правила движения и научился «крутить баранку», но ничего не знает об устройстве автомобиля.

Отправляться в длительное путешествие с такими знаниями рискованно, даже если машина вполне надежна. В пути бывают всякие неожиданности.

Рассмотрим самое общее устройство «пищеварительной машины».

Процес пищеварения в организме человека

Итак, взглянем на схему.

Мы откусили кусочек чего-нибудь съестного.

ЗУБЫ

Откусили зубами (1) и ими же продолжаем пережевывать. Даже чисто физическое измельчение играет огромную роль – пища должна поступать в желудок в виде кашицы, кусками она переваривается в десятки и даже сотни раз хуже. Впрочем, сомневающиеся в роли зубов могут попробовать что-либо съесть, не откусывая и не перемалывая ими пищу.

ЯЗЫК И СЛЮНА

При жевании происходит также пропитывание слюной, выделяемой тремя парами больших слюнных желез (3) и множеством мелких. В сутки в норме вырабатывается от 0,5 до 2 литров слюны. Ее ферменты в основном расщепляют крахмал!

При должном пережевывании образуется однородная жидкая масса, требующая минимальных затрат для дальнейшего переваривания.

Помимо химического воздействия на пищу, слюна обладает бактерицидным свойством. Даже в промежутках между едой она всегда смачивает полость рта, предохраняет слизистую оболочку от пересыхания и способствует ее обеззараживанию.

Не случайно при мелких царапинах, порезах первое естественное движение - облизать ранку. Конечно, слюна как дезинфектор по надежности уступает перекиси или йоду, но зато всегда под рукой (то есть во рту).

Наконец, наш язык (2) безошибочно определяет, вкусно или невкусно, сладко или горько, солено или кисло.

Эти сигналы служат указанием, сколько и каких соков нужно для переваривания.

ПИЩЕВОД

Пережеванная пища через глотку попадает в пищевод (4). Глотание – довольно сложный процесс, в нем участвуют многие мышцы, и в известной мере оно происходит рефлекторно.

Пищевод представляет собой четырехслойную трубку длиной 22-30 см. В спокойном состоянии пищевод имеет просвет в виде щели, но съеденное и выпитое отнюдь не проваливается вниз, а продвигается за счет волнообразных сокращений его стенок. Все это время активно продолжается слюнное пищеварение.

ЖЕЛУДОК

Остальные пищеварительные органы располагаются в животе. Они отделены от грудной клетки диафрагмой (5) – главной дыхательной мышцей. Через специальное отверстие в диафрагме пищевод попадает в брюшную полость и переходит в желудок (6).

Этот полый орган формой напоминает реторту. На его внутренней слизистой поверхности находится несколько складок. Объем совершенно пустого желудка около 50 мл. При еде он растягивается и может вмещать весьма немало - до 3-4 л.

Итак, проглоченная пища в желудке. Дальнейшие превращения определяются прежде всего ее составом и количеством. Глюкоза, спирт, соли и избыток воды могут сразу всасываться – в зависимости от концентрации и сочетания с другими продуктами. Основная же масса съеденного подвергается действию желудочного сока. Этот сок содержит соляную кислоту, ряд ферментов и слизь. Его выделяют специальные желёзки в слизистой желудка, которых насчитывают около 35 млн.

Причем состав сока каждый раз меняется: на каждую пищу свой сок. Интересно, что желудок как бы заранее знает, какая работа ему предстоит, и выделяет нужный сок порой задолго до еды – при одном виде или запахе пищи. Это доказал еще академик И. П. Павлов в своих знаменитых опытах с собаками. А у человека сок выделяется даже при отчетливой мысли о еде.

Фрукты, простокваша и другая легкая пища требуют совсем немного сока невысокой кислотности и с малым количеством ферментов. Мясо же, особенно с острыми приправами, вызывает обильное выделение весьма крепкого сока. Относительно слабый, но чрезвычайно богатый ферментами сок вырабатывается на хлеб.

Всего за день выделяется в среднем 2-2,5 л желудочного сока. Пустой желудок периодически сокращается. Это знакомо всем по ощущениям «голодных спазмов». Съеденное же на какое-то время приостанавливает моторику. Это важный факт. Ведь каждая порция пищи обволакивает внутреннюю поверхность желудка и располагается в виде конуса, вложенного в предыдущий. Желудочный сок действует в основном на поверхностные слои, контактирующие со слизистой оболочной. Внутри же еще долгое время работают ферменты слюны.

Ферменты – это вещества белковой природы, обеспечивающие протекание какой-либо реакции. Главный фермент желудочного сока – пепсин, отвечающий за расщепление белков.

ДВЕНАДЦАТИПЕРСТНАЯ КИШКА

По мере переваривания порции пищи, расположенные у стенок желудка, продвигаются к выходу из него – к привратнику.

Благодаря возобновившейся к этому времени моторной функции желудка, то есть его периодическим сокращениям, пища основательно перемешивается.

В результате в двенадцатиперстную кишку (11) поступает уже почти однородная полупереваренная кашица. Привратник желудка «охраняет» вход в двенадцатиперстную кишку. Это мышечный клапан, пропускающий пищевые массы только в одном направлении.

Двенадцатиперстная кишка относится к тонкой кишке. Вообще-то весь пищеварительный тракт, начиная с глотки и вплоть до заднего прохода, представляет собой одну трубку с разнообразными утолщениями (даже таким крупным, как желудок), множеством изгибов, петель, несколькими сфинктерами (клапанами). Но отдельные части этой трубки выделяются и анатомически, и по выполняемым в пищеварении функциям. Так, тонкую кишку считают состоящей из двенадцатиперстной кишки (11), тощей кишки (12) и подвздошной кишки (13).

Двенадцатиперстная кишка самая толстая, но длина ее всего 25-30 см. Ее внутренняя поверхность покрыта множеством ворсинок, а в подслизистом слое находятся небольшие железки. Их секрет способствует дальнейшему расщеплению белков и углеводов.

В полость двенадцатиперстной кишки открываются общий желчный проток и главный проток поджелудочной железы.

ПЕЧЕНЬ

По желчному протоку поставляется желчь, вырабатываемая самой крупной в организме железой – печенью (7). За день печень производит до 1 л желчи – довольно внушительное количество. Желчь состоит из воды, жирных кислот, холестерина и неорганических веществ.

Желчеотделение начинается уже через 5-10 минут после начала еды и заканчивается, когда последняя порция пищи покидает желудок.

Желчь полностью прекращает действие желудочного сока, благодаря чему желудочное пищеварение сменяется на кишечное.

Она также эмульгирует жиры – образует с ними эмульсию, многократно повышая поверхность соприкосновения жировых частиц с воздействующими на них ферментами.

ЖЕЛЧНЫЙ ПУЗЫРЬ

В ее же задачу входит улучшить всасывание продуктов расщепления жиров и других питательных веществ – аминокислот, витаминов, способствовать продвижению пищевых масс и предупредить их гниение. Запасы желчи хранятся в желчном пузыре (8).

Наиболее активно сокращается его нижняя, примыкающая к привратнику часть. Его емкость около 40 мл, однако желчь в нем находится в концентрированном виде, сгущаясь в 3-5 раз по сравнению с печеночной желчью.

При необходимости она поступает через пузырный проток, который соединяется с печеночным протоком. Образуемый общий желчный проток (9) и доставляет желчь в двенадцатиперстную кишку.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

Сюда же выходит проток поджелудочной железы (10). Это вторая по величине железа у человека. Ее длина достигает 15-22 см, вес - 60-100 граммов.

Строго говоря, поджелудочная железа состоит из двух желез – экзокринной, вырабатывающей в день до 500-700 мл панкреатического сока, и эндокринной, производящей гормоны .

Разница между этими двумя видами желез заключается в том, что секрет экзокринных желез (желез внешней секреции) выделяется во внешнюю среду, в данном случае в полость двенадцатиперстной кишки, а производимые эндокринными (то есть внутренней секреции) железами вещества, называемые гормонами, попадают в кровь или в лимфу.

Панкреатический сок содержит целый комплекс ферментов, расщепляющих все пищевые соединения – и белки, и жиры, и углеводы. Этот сок выделяется при каждом «голодном» спазме желудка, непрерывное же его поступление начинается через несколько минут после начала еды. Состав сока меняется в зависимости от характера пищи.

Гормоны поджелудочной железы - инсулин, глюкагон и др. регулируют углеводный и жировой обмен. Инсулин, например, приостанавливает распад гликогена (животного крахмала) в печени и переводит клетки тела на питание преимущественно глюкозой. Уровень сахара в крови при этом снижается.

Но вернемся к превращениям пищи. В двенадцатиперстной кишке она смешивается с желчью и панкреатическим соком.

Желчь приостанавливает действие желудочных ферментов и обеспечивает должную работу сока поджелудочной железы. Белки, жиры и углеводы подвергаются дальнейшему расщеплению. Лишняя вода, минеральные соли, витамины и полностью переваренные вещества всасываются через кишечные стенки.

КИШЕЧНИК

Резко изгибаясь, двенадцатиперстная кишка переходит в тощую (12), длиной 2-2,5 м. Последняя в свою очередь соединяется с подвздошной кишкой (13), длина которой 2,5-3,5 м. Общая протяженность тонкой кишки составляет, таким образом, 5-6 м. Ее всасывающая способность многократно увеличивается благодаря наличию поперечных складок, число которых достигает 600-650. Кроме того, внутреннюю поверхность кишки выстилают многочисленные ворсинки. Их согласованные движения обеспечивают продвижение пищевых масс, через них же поглощаются питательные вещества.

Раньше считалось, что кишечное всасывание процесс чисто механический. То есть предполагалось, что питательные вещества расщепляются до элементарных «кирпичиков» в полости кишки, а затем эти «кирпичики» проникают в кровь через кишечную стенку.

Но оказалось, что в кишке пищевые соединения «разбираются» не до конца, а окончательное расщепление происходит только вблизи стенок кишечных клеток . Этот процесс был назван мембранным, или пристеночным

В чем оно заключается? Питательные компоненты, уже изрядно измельченные в кишке под действием панкреатического сока и желчи, проникают между ворсинками кишечных клеток. Причем ворсинки образуют столь плотную кайму, что для крупных молекул, а тем более бактерий, поверхность кишки недоступна.

В эту стерильную зону кишечные клетки выделяют многочисленные ферменты, и осколки питательных веществ разделяются на элементарные составляющие – аминокислоты, жирные кислоты, моносахариды, которые и всасываются. И расщепление, и всасывание происходят в очень ограниченном пространстве и часто объединены в один сложный взаимосвязанный процесс.

Так или иначе на протяжении пяти метров тонкой кишки пища полностью переваривается и полученные вещества попадают в кровь.

Но они поступают не в общий кровоток. Если бы это произошло, человек мог бы умереть после первой же еды.

Вся кровь от желудка и от кишечника (тонкого и толстого) собирается в воротную вену и направляется в печень . Ведь пища дает не только полезные соединения, при ее расщеплении образуется множество побочных продуктов.

Сюда же надо добавить токсины , выделяемые кишечной микрофлорой, и многие лекарственные вещества и яды, присутствующие в продуктах (особенно при современной экологии). Да и чисто питательные компоненты не должны сразу попадать в общее кровяное русло, в противном случае их концентрация превысила бы все допустимые пределы.

Положение спасает печень. Ее не зря называют главной химической лабораторией тела. Здесь происходит обеззараживание вредных соединений и регуляция белкового, жирового и углеводного обмена. Все эти вещества могут синтезироваться и расщепляться в печени - по потребности, обеспечивая постоянство нашей внутренней среды.

Об интенсивности ее работы можно судить по тому факту, что при собственном весе 1,5 кг печень расходует примерно седьмую часть всей производимой организмом энергии. За минуту через печень проходит около полутора литров крови, причем в ее сосудах может находиться до 20 % общего количества крови у человека. Но проследим до конца путь пищи.

Из подвздошной кишки через специальный клапан, препятствующий обратному затеканию, непереваренные остатки попадают в толстую кишку . Обитая длина ее от 1,5 до 2 метров. Анатомически она подразделяется на слепую кишку (15) с червеобразным отростком (аппендиксом) (16), восходящую ободочную кишку (14), поперечную ободочную (17), нисходящую ободочную (18), сигмовидную кишку (19) и прямую (20).

В толстой кишке завершается всасывание воды и формируется кал. Для этого кишечными клетками выделяется специальная слизь. В толстой кишке находят прибежище мириады микроорганизмов. Выделяемый кал примерно на треть состоит из бактерий. Нельзя сказать, что это плохо.

Ведь в норме устанавливается своеобразный симбиоз хозяина и его «квартирантов».

Микрофлора питается отходами, а поставляет витамины, некоторые ферменты, аминокислоты и другие нужные вещества. Кроме того, постоянное наличие микробов поддерживает работоспособность иммунной системы, не позволяя ей «дремать». Да и сами «постоянные обитатели» не допускают внедрение чужаков, нередко болезнетворных.

Но такая картина в радужных тонах бывает лишь при правильном питании. Неестественные, рафинированные продукты, избыток пищи и неправильные сочетания изменяют состав микрофлоры. Начинают преобладать гнилостные бактерии, и вместо витаминов человек получает яды. Сильно бьют по микрофлоре и всевозможные лекарства, особенно антибиотики.

Но так или иначе фекальные массы продвигаются благодаря волнообразным движениям ободочной кишки - перистальтике и достигают прямой кишки. На ее выходе для подстраховки расположены целых два сфинктера - внутренний и наружный, которые замыкают задний проход, открываясь лишь при дефекации.

При смешанном питании из тонкой кишки в толстую за сутки в среднем переходит около 4 кг пищевых масс, кала же вырабатывается лишь 150-250 г.

Но у вегетарианцев кала образуется значительно больше, ведь в их пище очень много балластных веществ. Зато и кишечник работает идеально, микрофлора устанавливается самая дружественная, а ядовитые продукты значительной частью даже не достигают печени, поглощаясь клетчаткой, пектинами и другими волокнами.

На этом мы закончим наш экскурс по пищеварительной системе. Но надо отметить, что ее роль отнюдь не сводится только к перевариванию. В нашем теле все взаимосвязано и взаимозависимо как на физическом, так и на энергетическом планах.

Совсем недавно, например, установили, что кишечник является и мощнейшим аппаратом по производству гормонов. Причем по объему синтезируемых веществ он сопоставим (!) со всеми остальными эндокринными железами, вместе взятыми. опубликовано