Что такое лимфатический капилляр определение по биологии. Лимфа и лимфообращение


Лимфатическая система - это комплекс разветвленной в тканях и органах сети особых сосудов и структурных элементов, без которых организм функционировать не может. Система считается частью иммунитета. Лимфососуды проходят на своем пути через лимфоузлы, являющиеся физиологическими фильтрами. Сама лимфа (в переводе с лат. означает «влага» или «чистая вода») - разновидность межтканевой жидкости. Она прозрачна и бесцветна, омывает и очищает весь организм.

Задача лимфатической системы

Она играет важнейшую роль:

  • барьерная функция и утилизация вредоносных агентов;
  • помогает циркуляции тканевой жидкости, вымывая из тканей токсины и метаболиты;
  • занимается доставкой питательных веществ из тонкого кишечника в виде жиров, жирных кислот (белки всасываются в кровь сразу сами);
  • производит лимфоциты - главные элементы иммунитета.

Известно, что лимфосистема у женщин имеет большую разветвленность, зато у мужчин большее число лимфоузлов.

В общем, организме насчитывается более 500 узлов! При этом враждебные для организма элементы фильтруются и обрабатываются еще на стадии лимфы и уничтожаются в лимфоузлах. Это остатки мертвых клеток, других элементов тканей, клеток-мутантов, микробы и их метаболиты. Лимфа, по сути, выполняет роль фильтра, то есть она очищает от токсинов, патогенных агентов и продуктов распада тканей.

Анатомия лимфосистемы

Анатомически лимфосистема состоит из:

  • капилляров лимфатических;
  • лимфососудов с укрупнением калибра - они сливаются в протоки или стволы;
  • лимфоузлов;
  • лимфатических органов (к ним относят тимус, миндалины и селезенку).

Движение лимфы

Лимфоток всегда направлен от периферии к центру, причем с постоянной скоростью. К узлам подходит большое число сосудов, а выходит 1-2. Стенки сосудов постоянно сокращаются за счет своих мышечных волокон и работы клапанов.

И движение лимфы тоже происходит с их помощью. Клапанов в заметно больше, чем в кровеносных. Синтезируется лимфа в лимфатических капиллярах. После узлов очищенная и профильтрованная лимфа вливается в крупные вены. По пути от каждого органа лимфа проходит через несколько лимфоузлов.

Значение лимфы

Если лимфа не будет циркулировать по организму хотя бы 2 часа, он не сможет продолжать свою жизнедеятельность. Таким образом, организм непрерывно нуждается в работе лимфатической системы.

Различия между двумя системами следующие.

  1. В лимфосистеме нет циркуляции жидкости по кругу ввиду ее незамкнутости.
  2. Если кровь в кровеносных сосудах движется в 2 противоположных направлениях - вены и артерии, то в лимфатической - в одном.
  3. Отсутствует центральный насос в виде сердечной мышцы в системе лимфы. Для продвижения лимфы используется только система клапанов.
  4. Кровь движется быстрее лимфы.
  5. Важно! В кровеносной системе нет особых образований в виде узлов; лимфоузлы - своего рода склад для лимфоцитов, которые здесь же синтезируются и обучаются. Эти элементы крови - первые помощники иммунитета в борьбе с инфекцией.

Строение лимфатических капилляров

Капилляры - начальное звено системы лимфы. Строение лимфатических капилляров заметно отличается от кровеносных: они замкнутые только с одного конца. Слепые концы капилляров имеют форму булавки и немного расширены.

Вкупе лимфатические капилляры, несмотря на свой очень мелкий калибр, образуют в органах и тканях довольно мощную сеть. Сливаясь, они переходят плавно в лимфатические сосуды более крупного диаметра, так же, как в кровеносной капилляры переходят в артериолы.

Стенки капилляров сверхтонкие, благодаря всего одному слою Через них белковые соединения проходят без труда. Отсюда они уже поставляются в вены. Лимфатические капилляры функционируют практически повсеместно, в любой ткани организма. Отсутствуют они только в ткани мозга, его оболочках, хрящах и в самой иммунной системе. В плаценте их тоже не бывает.

Лимфатические капилляры по сравнению с кровеносными больше по диаметру (до 0,2 мм), за счет своих расширений (лакун) в местах слияния в сеть. Контуры у них неровные. Стенки капилляров образованы одним слоем эндотелиоцитов, по размерам в разы превосходящих клетки кровеносных. Величина диаметра предопределяет участие в составе стенки капилляра.

Функциональные особенности лимфокапилляров

Значение и функции лимфатических капилляров заключаются в продуцировании лимфы, защитно-барьерной функции и лимфопоэзе.

Лимфатические сосуды первым описал и выявил в Средние века (1651) Жан Пеке - анатом из Франции. Как правило, лимфососуды в тканях идут параллельно кровеносным. По своей расположенности они бывают глубокие (во внутренних органах) и поверхностные (рядом с подкожными венами). Эти сосуды сообщаются между собой анастомозами.

Строение лимфатических сосудов

Лимфатические капилляры и лимфатические сосуды более крупного калибра различаются не только размерами, но и строением стенок. Стенки мелких сосудов состоят из слоя эндотелиальных клеток и соединительной ткани.

Строение средних и крупных лимфососудов напоминает вены - их стенки также трехслойные. Это:

  • внешний соединительнотканный слой;
  • средний гладкомышечный слой;
  • эндотелиальный внутренний слой.

За счет расширений они имеют вид четок. Сосудистые клапаны образуются складками эндотелия. В толще створок содержатся фиброзные волокна.

Крупные лимфососуды имеют в стенках свои кровеносные капилляры, от которых получают для себя питание, и свои нервные окончания. Лимфатические сосуды имеются практически во всех тканях и органах. Исключение составляют хрящи, паренхима селезенки, склера и хрусталик.

Лимфатические капилляры являются начальным звеном лимфатической системы. Они имеются во всех органах и тканях человека, кроме головного и спинного мозга, их оболочек, глазного яблока, внутреннего уха, эпителия кожи и слизистых оболочек, ткани селезенки, костного мозга и плаценты.

Диаметр лимфатических капилляров 0,01-0,02 мм. Стенка капилляра состоит из одного слоя эндотелиальныхь клеток, которые особыми выростами – филаментами крепятся к расположенным рядом тканям. Лимфатические капилляры, соединяясь друг с другом, образуют лимфокапиллярные сети в органах и тканях.

Стенка капилляров обладает избирательной способностью к различным веществам. Повышение лимфообразования происходит под действием некоторых веществ, получивших название лимфогенных (пептоны, гистамин, экстракты из пиявок).

Лимфатические капилляры высокопроницаемы для многих клеток и веществ. Так, эритроциты, лимфоциты, хиломикроны, макромолекулы легко проникают в лимфатические капилляры, поэтому лимфа выполняет не только транспортные, но и защитные функции.

Лимфатические сосуды

Лимфатические сосуды образуются при слиянии лимфатических капилляров.

Стенки лимфатических сосудов состоят из трех слоев. Внутренний слой состоит из клеток эндотелиоцитов. Средний слой состоит из клеток гладкой мышечной мускулатуры (мышечный слой). Наружный слой лимфатических сосудов состоит из соединительнотканной оболочки.

Лимфатические сосуды имеют клапаны, наличие которых дает лимфососудам четкообразный вид. Назначение клапанов – пропускать лимфу только в одном направлении – от периферии к центру. В зависимости от диаметра лимфатического сосуда расстояние клапанов друг от друга – от 2 мм до 15 мм.

Лимфатические сосуды из внутренних органов, мышц выходят, как правило, с кровеносными сосудами – это так называемые глубокие лимфатические сосуды. Поверхностные лимфатические сосуды располагаются рядом с подкожными венами. В подвижных местах (около суставов) лимфатические сосуды раздваиваются и соединяются вновь после сустава.

Лимфатические сосуды, соединяясь между собой, образуют сети лимфатических сосудов. В стенках крупных лимфатических сосудов имеются мелкие кровеносные сосуды, питающие кровью эти стенки, а также есть и нервные окончания.

Лимфатические узлы

По лимфатическим сосудам лимфа от органов и тканей тела направляется к лимфатическим узлам. Лимфатические узлы выполняют функцию фильтра и играют большую роль в иммунной защите организма.

Лимфатические узлы располагаются около крупных кровеносных сосудов, чаще венозных, обычно группами от нескольких узлов до десяти и более. В организме человека выделяют около 150 групп лимфатических узлов. У различных видов животных количество узлов варьирует: 190 у свиньи, до 8000 у лошади

Группы лимфатических узлов залегают поверхностно – под кожным слоем (паховые, подмышечные, шейные узлы и др.) и во внутренностных полостях организма – в брюшной, грудной, тазовой полостях, около мышц.

Лимфатический узел имеет розовато-серый цвет, округлую форму. Размеры лимфоузла от 0,5 мм до 22 мм в длину. Масса всех лимфоузлов у взрослого человека – 500-1000 г. Снаружи лимфатический узел покрыт капсулой. Внутри его содержится лимфоидная ткань и система сообщающихся друг с другом каналов – лимфоидных синусов, по которым лимфа течет через лимфатический узел.

К лимфатическому сосуду подходят 2-4 лимфатических сосуда, а выходит из него 1-2 сосуда. На своем пути от каждого органа лимфа проходит не менее, чем через один лимфатический узел. Лимфатические сосуды имеют кровоснабжение через мелкие кровеносные сосуды, к лимфоузлам подходят и проникают в них нервные окончания.

Роль лимфатических узлов. Каждый лимфатический узел контролирует определенный участок лимфатической системы. При попадании в организм микробов или трансплантации чужеродной ткани ближайший к этому месту лимфатический узел уже через несколько часов начинает увеличиваться в размерах, лимфоидные клетки его интенсивно делятся и образуют огромное количество малых лимфоцитов. Функция малых лимфоцитов - организация специфической самозащиты организма (иммунной реакции) от чужеродных агентов - антигенов. Малые лимфоциты образуются из стволовых клеток костного мозга. В лимфатических узлах различают долгоживущие тимусзависимые (Т-лимфоциты), которые прошли стадии развития в тимусе, и недолговечные В-лимфоциты, которые не были в тимусе, а прямо из костного мозга попали в лимфатические узлы.

Макрофаги первыми атакуют попавшие в организм антигены. Т-лимфоциты вырабатывают особое вещество (гуморальный фактор), которое уменьшает подвижность макрофагов, благодаря чему антигены концентрируются в лимфатических узлах. Там на них обрушивается вся мощь иммунной защиты. Один тип Т-лимфоцитов (клетки-убийцы) непосредственно уничтожает антигены, другой тип Т-лимфодитов (клетки памяти) после первого внедрения чужеродного агента сохраняет память о нем на всю жизнь и обеспечивают более активную реакцию на вторичное вторжение. Т-лимфоциты вместе с макрофагами «преподносят» антиген в таком виде, что это стимулирует В-лимфоциты к превращению сначала в большие лимфоциты, а затем в плазматические клетки, производящие антитела против данного антигена.

Таким образом, лимфатические узлы играют важную роль как в инфекционном, так и трансплантационном иммунитете.

Возрастные особенности лимфатических узлов у человека:

Лимфатические узлы расположены по ходу лимфатических сосудов и вместе с ними составляют лимфатическую систему. Они являются органами лимфопоэза и образования антител. Лимфатические узлы, которые оказываются первыми на пути лимфатических сосудов, несущие лимфу из данной области тела (региона) или органа, считаются регионарными.

У новорожденных детей капсула лимфатического узла еще очень нежная и тонкая, поэтому их трудно прощупать под кожей. К годовалому возрасту лимфатический узел уже можно прощупать почти у всех здоровых детей.

У большинства детей в возрасте 3-6 лет имеется некоторая гиперплазия периферического лимфоидного аппарата. Маслов М.С. указывал, что «лимфатизм» присущ, в основном, всему детскому населению, и что в той или иной степени все дети до 7 лет являются лимфатиками. Воронцов И.М считает, что у детей раннего возраста могут быть различные виды лимфатизма, возникающего от перекармливания или из-за повторных вирусных инфекций. Однако при всех ситуациях истинный лимфатический диатез необходимо дифференцировать от акселерационного, алиментарного и иммунодефицитного лимфатизма. Распространенность лимфатического диатеза у детей дошкольного возраста составляет 3-6%, а по другим данным достигает 13%.

Считается, что в норме у здоровых детей обычно прощупывается не более трех групп лимфатических узлов. Не должны пальпироваться подбородочные, надключичные, подключичные, грудные, локтевые, подколенные лимфатические узлы. Однако до настоящего времени окончательно не разработаны критерии нормы и патологии лимфатических узлов в детском возрасте и принятые в нашей стране и широко рекомендуемое в отечественной литературе сравнение лимфатических узлов с размером зерна, гороха, вишней, фасолью, лесным или грецким орехом нерационально, т.к. дает несопоставимые результаты. По данным литературы, у большинства детей шейные лимфаденопатии имеют инфекционно-воспалительную природу (92,5%), в 4,5% случаев – опухолевую, в 2,7% - инфекционно-аллергическую. Причем наиболее частым возбудителем неспецифических лимфаденитов у детей является золотистый стафилококк.

Возрастные изменения инволютивного плана (уменьшение количества лимфоидной ткани, разрастание жировой) в лимфатических узлах наблюдаются уже в юношеском возрасте. Разрастается соединительная ткань в строме и паренхиме узлов, появляются группы жировых клеток. Одновременно с этим уменьшается количество лимфатических узлов в регионарных группах. Многие лимфатические узлы небольших размеров полностью замещаются соединительной тканью и перестают существовать как органы иммунной системы. Рядом лежащие лимфатические узлы срастаются друг с другом и образуют более крупные узлы сегментарной или лентовидной формы.

В любом случае наличие у ребенка пальпируемых лимфатических узлов, размеры которых превышают возрастные нормы, является показанием к уточнению их природы. На современном этапе с этой целью возможно использование технических средств, в первую очередь, эхографии, т.е. метода обследования с помощью ультразвуковых волн.

Лимфатические узлы перестраиваются в течение всей жизни, в том числе у пожилых и старых людей. От юношеского возраста (17-21 год) до пожилого (60-75 лет) количество их уменьшается в 1,5 - 2 раза. По мере увеличения возраста человека в узлах, преимущественно соматических, происходят утолщение капсулы и трабекул, увеличение соединительной ткани, замещение паренхимы жировой тканью. Такие узлы теряют свои естественные строение и. свойства, запустевают и становятся непроходимыми для лимфы. Число лимфатических узлов уменьшается и за счет срастания двух узлов, лежащих рядом, в более крупный лимфатический узел. С возрастом меняется и форма узлов. В молодом возрасте преобладают узлы округлой и овальной формы, у пожилых и "старых людей они как бы вытягиваются в длину. Таким образом, у пожилых и старых людей количество функционирующих лимфатических узлов уменьшается за счет их атрофии и срастания друг с другом, в результате чего у лиц старшего: возраста преобладают крупные лимфатические узлы.

Лимфа, образовавшаяся в результате всасывания в капилляры лимфатической системы, проходит по капиллярам, посткапиллярам и лимфатическим сосудам, через лимфатические узлы, по коллекторным лимфатическим стволам, которые открываются в вены в нижних отделах шеи.

Таким образом, лимфатические капилляры являются не только местом образования лимфы (корнями лимфатической системы), но и вместе с посткапиллярами, лимфатическими сосудами, лимфатическими узлами и главными коллекторными лимфатическими стволами служат путями движения лимфы, т. е. лимфопроводящими путями.

Поскольку функция лимфатических сосудов и главных коллекторных лимфатических стволов заключается только в проведении лимфы, а лимфатические узлы выполняют барьерную, лимфоцитопоэтическую, защитную, обменную и резервуарную функции, то и строение этих отделов лимфопроводящих путей значительно отличается.

Лимфатические капилляры характеризуются извилистостью, наличием сужений и расширений, боковых выпячиваний, образованием лимфатических «озер» и «лакун» в местах слияния нескольких капилляров. Форма и размеры лимфатических капилляров, а также характер образуемых ими сетей зависят от конструкции органа и строения его соединительнотканного остова [Жданов Д. А., 1952].

Диаметр лимфатических капилляров колеблется в широких пределах — от 10 до 200 мкм.

Стенка лимфатических капилляров построена из одного слоя эндотелиальных клеток, которые с наружной их стороны при помощи пучков тончайших волоконец — стропных (якорных) филаментов [Шахламов В. А.. 1971; Leak L., 1968] прикреплены к рядом лежащим пучкам коллагеновых волокон. Некоторые авторы считают, что в стенке лимфатического капилляра, кроме эндотелия, имеется прерывистая базальная мембрана .

Интимная связь стенок лимфатических капилляров с соединительнотканными волокнами способствует раскрытию просвета этих капилляров, особенно при отеках окружающих тканей, когда раздвигающиеся пучки коллагеновых волокон растягивают стенки лимфатических капилляров.

«Внеорганные пути транспорта лимфы»,
М.Р.Сапин, Э.И.Борзяк

В капсуле и трабекулах лимфатических узлов человека найдены отдельные гладкомышечные клетки и их пучки [Жданов Д. А., 1952; Виноградова С. С, 1971; Зуев А. М., 1975; Leiber В., 1961]. Наличие гладкомышечных клеток в капсуле узла является свидетельством возможности активного влияния узла на ток лимфы [Жданов Д. А., 1940; Огнев Б. В., 1971; Зуев А. М., …

Согласно сложившемуся представлению, появление клапанов означает переход лимфатического капилляра в лимфатический сосуд, по которому лимфа может течь только в одном направлении — от капилляров в сторону лимфатических узлов, а затем к коллекторным лимфатическим сосудам. В. В. Куприянов (1969) выделил в начальном отделе лимфопроводящих путей лимфатические посткапилляры, единственно надежным отличием которых от капилляров, по данным автора, …

Форма лимфатического сосуда значительно отличается от истинного лимфатического капилляра. Для лимфатического сосуда характерно наличие по его длине чередующихся сужений и расширений. Это придает лимфатическому сосуду своеобразную (четкообразную) форму, позволяющую легко отличить лимфатический сосуд от лимфатических капилляров. Ярко выраженную четкообразную форму имеют лимфатические сосуды более крупного диаметра (от 0,5 мм и больше). В то же время …

Доказательством морфофункционального единства лимфатических сосудов и соединяющих их анастомозов является их проходимость для синей массы Герота и других окрашенных жидкостей (взвесей) на трупах и для рентгеноконтрастного вещества, применяемого при лимфографии у живого человека . Уже давно известно, что лимфатические сосуды диаметром 30 — 40 мкм имеют эндотелиальный слой, окруженный соединительнотканной оболочкой, …

По данным М. Г. Привеса (1948), Д. А. Жданова (1952), в средней оболочке мышечные пучки идут двумя пересекающимися диагональными спиралями и иногда в поперечном направлении. Д. А. Жданов (1952) и др. считали, что лимфатические сосуды с хорошо развитым мышечным слоем напоминают по своему строению мелкие артерии мышечного типа. Результаты исследований Д. А. Жданова показали, что …

В зависимости от строения средней оболочки лимфатические сосуды разделяют на две группы: безмышечные и мышечные. Безмышечные лимфатические сосуды образованы слоем эндотелиальных клеток, который окружен соединительнотканной оболочкой, содержащей коллагеновые и эластические волокна. Последние могут образовывать несколько слоев. В стенке безмышечных лимфатических сосудов выделить три оболочки практически невозможно. Средняя оболочка мышечных лимфатических сосудов характеризуется хорошо развитыми пучками …

Клапаны лимфатических сосудов являются парными складками (створками) внутренней оболочки, лежащими друг против друга. Более 300 лет назад установлено, что клапаны во всех лимфатических сосудах имеют полулунную форму. Однако результаты сравнительно недавних исследований показали, что эти клапаны различаются и по форме, и по размерам. При изучении лимфатических сосудов с помощью стереомикроскопических методов и сканирующей электронной микроскопии …

Лимфатические сосуды, расположенные в областях с сильно развитой жировой клетчаткой, имеют большее количество клапанов по сравнению с сосудами других областей. Назначение клапанов состоит в обеспечении центростремительного направления тока лимфы по лимфатическому сосуду, предотвращении возможности обратного (центрофугального) ее тока. Известно, что стенка лимфатических сосудов имеет хорошо развитую иннервацию. В стенке лимфатических сосудов большого размера имеются четыре …

По мнению Д. А. Жданова (1940, 1952), М. Г. Привеса (1948) и А. А. Сушко (1966), сократительная деятельность стенок лимфатических сосудов является главным фактором этого движения лимфы. J. В. Kinmonth и соавт. (1963) наблюдали сокращения стенок лимфатических сосудов у человека. В 1940 г. W. Pfuhl и W. Wiegand показали, что четкообразные расширения лимфатических сосудов, имеющих …

Лимфатические узлы являются органами, в которых заканчиваются лимфатические сосуды (приносящие — vasa afferentia), идущие от органов и систем органов. Из лимфатических узлов выходят вносящие лимфатические сосуды (vasa efferentia), направляющиеся к следующим по току лимфы лимфатическим узлам или непосредственно к коллекторным лимфатическим сосудам: стволам и протокам, которые впадают в вены в нижних отделах шеи. Чрезвычайно разнообразные …

Вполне естественно, что рассмотрение морфологии лимфатической системы начинается с определения лимфатического капилляра, который представляет собой исходный и самый главный элемент лимфатической системы. Анатомически лимфатический капилляр, подобно кровеносному капилляру, имеет вид микротрубочки, или волосного канальца, имеющего очень тонкую стенку, состоящую из одного слоя эндотелиальных клеток (смотрите рисунок ниже). Одни капилляры под световым микроскопом выглядят как слепо начинающиеся трубки, напоминающие пальцы перчатки (смотрите рисунок ниже - а), другие начинаются петлей (смотрите рисунок ниже - б), третьи могут начинаться по типу разветвленного корня.

а - слепо начинающийся лимфатический капилляр фиброзной капсулы почки. Импрегнация нитратом серебра. X 300 (препарат Н. В. Куприяновой); б - петлевидная форма лимфатического капилляра плевры человека. Импрегнация нитратом серебра. X 300 (препарат Т. И. Семеновой).

В. Д. Арутюнов и соавт. (1976) описали шарообразную форму начальных лимфатических капилляров. Сходные образования известны в литературе под названием луковицеобразных или бульбозных . Классическим примером пальцевидного капилляра служит центральный лимфатический синус кишечной ворсинки. В литературе есть указания на то, что лимфатический капилляр существует лишь как элемент сети, а пальцеобразные слепо начинающиеся трубочки следует отнести к выростам лимфатических капилляров или сосудов (смотрите рисунок ниже).

Миокард крысы. Сканограмма коррозионного препарата.

Такие выросты встречаются по ходу компонентов капиллярной сети, свидетельствуя об их реакции на неадекватное воздействие; ими начинается и новообразование лимфатических капилляров, которые включаются в капиллярную сеть. Крайне затруднительно Дифференцировать феномен избыточного роста стенки лимфатических сосудов и слепые выпячивания стенки как остатки редуцирующихся сосудов.

Многие авторы фиксируют на своих препаратах слепые пальцеобразные отростки капилляров, напоминающие слепые выпячивания стенки лимфатических сосудов. Их квалифицируют по-разному. Так, А. И. Свиридов (1966), считал их слепо начинающимися капиллярами. А. А. Сушко и Л. В. Чернышенко (1966), А. В. Борисов (1967) рассматривали их как растущие или вновь образующиеся капилляры. По нашему мнению, это постоянно существующая форма капилляров, представленная в лимфатическом русле многих органов наравне с петлями лимфатических капилляров. Это не отростки, не абортивные компоненты сети, не окончания, а именно начальные, или исходные, корни лимфатической системы.

«Микролимфология», В.В.Купирянов, Ю.И. Бородин


В настоящее время базальные мембраны выделены во многих органах. Возникла необходимость их морфофункционального определения и последующей классификации. Трудно допустить их полную однородность в различных тканевых структурах. К тому же еще неизвестны их генетическая обусловленность и функциональная детерминация. Мнения относительно происхождения базальных мембран чрезвычайно противоречивы. Возьмем для примера стенку капилляров. Имеется мнение, согласно которому базальная мембрана…



Многочисленные исследования, выполненные в последние годы с помощью электронной микроскопии, показали, что динамика структурных перестроек стенки лимфатических капилляров связана с процессом резорбции жидкости и макромолекул белка. В обеспечении этого процесса основная роль принадлежит межклеточным контактам и микропиноцитозным везикулам. Межклеточные контакты в стенке лимфатических капилляров представляют собой специализированные образования, которые возникают благодаря близкому противостоянию краев смежных…


К числу внутриклеточных структур, поддерживающих ту или иную форму эндотелиальных клеток лимфатических капилляров, относятся микротрубочки и цитоплазматические микрофиламенты (смотрите рисунок ниже). Микротрубочки (указаны одной стрелкой) и микрофиламенты (указаны двумя стрелками) в цитоплазме эндотелиалъной клетки лимфатического капилляра Фиброзная капсула почки собаки, х 10 000. Поскольку их ультраструктура описана достаточно подробно, следует остановиться лишь на некоторых фактах,…


Поверхность эндотелиальных клеток, обращенная к интерстицию, более гладкая, за исключением мест, где к плазмалемме фиксируются микрофибриллы. Эти пучки фибрилл, описанные в 30-х годах , расшифрованы с помощью электронного микроскопа [Шахламов В. А., 1971; Шахламов В. А., Цамерян А. П., 1972; Leak L., Burke J., 1968] под названием «якорных» или «стропных» филаментов.…


Концепция о роли стропных филаментов отличается новизной, хотя факт существования подобных связей у лимфатических капилляров был известен и ранее. Так, применение светового микроскопа позволило В. Pullinger и Florey Н. (1935) обнаружить ретикулиновые и коллагеновые волокна, от которых отходят отростки к тонким лимфатическим сосудам. Авторы предполагали, что при отеках (в связи с повышением давления в ткани)…


Следует подчеркнуть, что слепые начала лимфатических капилляров ориентированы в зонах максимальной фильтраций жидкости и белка - области венозных сегментов капилляров, посткапиллярных венул. Несомненно такое положение обеспечивает эффективное поступление содержимого интерстициального пространства в их просвет. Интенсивная резорбция жидкости из соединительно-тканного пространства поддерживается относительно большой площадью обмена лимфатических капилляров, которые погружены в интерстицнальный матрикс. Вопрос о начальных…


Пути выведения продуктов обмена и жидкостей из тканей и органов более сложны, чем пути доставки крови. Существование двух систем оттока, т. е. оттока лимфы и венозной крови, можно объяснить требованиями надежности обеспечения указанной функции. Понятно поэтому, что в каждом органе лимфатическое русло должно отражать конкретные морфологические и физиологические особенности этого органа. Как показал Д. А.…


Анатомо-физиологические особенности лимфатических капилляров в различных регионах, органах и тканях неизбежны, но слабо изучены. Д. А. Жданов (1966) привел ряд примеров зависимости корней лимфатической системы от функционального состояния органов. Сразу же обращают на себя внимание резкие колебания плотности лимфатических капилляров в различных тканях. Чем определяется степень их разрастания? В чем причины отсутствия лимфатических капилляров и…


Диаметр лимфатических капилляров в нормальных условиях колеблется в пределах 10-200 мкм. Он в несколько раз превосходит диаметр кровеносных капилляров (смотрите рисунок ниже), который не превышает 20 мкм. Слепо начинающийся лимфатический капилляр (указан двумя стрелками), диаметр которого превосходит диаметр кровеносного капилляра (указан одной стрелкой) Брюшина собаки. X 300. Величина диаметра предопределяет участие в составе стенки капилляра…


В целом вопрос о существовании у лимфатических капилляров базальной мембраны пока считается открытым. Крупный специалист в области лимфологии J. Casley-Smith (1977) полагает, что базальная мембрана не всегда хорошо развита. Можно думать, что есть регионарные, видовые и возрастные колебания в становлении и организации этого компонента капиллярной стенки. Существует концепция о перителии как особом чехле капилляров, построенном…


При клеточном иммунитете цитотоксические Т-лимфоциты, или лимфоциты-киллеры (убийцы), которые непосредственно участвуют в уничтожении чужеродных клеток других органов или патологических собственных (например, опухолевых) клеток и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродных тканей в условиях трансплантации или при действии на кожу химических (сенсибилизирующих) веществ, вызывающих повышенную чувствительность (гиперчувствительность замедленного типа) и др.

При гуморальном иммунитете эффекторными клетками являются плазматические клетки, которые синтезируют и выделяют в кровь антитела.

Клеточный иммунный ответ формируется при трансплантации органов и тканей, инфицировании вирусами, злокачественном опухолевом росте.

Гуморальный иммунный ответ обеспечивают макрофаги (ан-тигенпрезентирующие клетки), Тх и В-лимфоциты. Попавший в организм антиген поглощается макрофагом. Макрофаг расщепляет его на фрагменты, которые в комплексе с молекулами МНС класса II появляются на поверхности клетки.

Кооперация клеток . Т-лимфоциты реализуют клеточные формы иммунного ответа, В-лимфоциты обуславливают гуморальный ответ. Однако обе формы иммунологических реакций не могут состояться баз участия вспомогательных клеток, которые в дополнение к сигналу, получаемому антигенреактивными клетками от антигена, формируют второй, неспецифический, сигнал, без которого Т-лимфоцит не воспринимает антигенное воздействие, а В-лимфоцит не способен к пролиферации.

Межклеточная кооперация входит в число механизмов специфической регуляции иммунного ответа в организме. В ней принимают участие специфические взаимодействия между конкретными антигенами и соответствующими им структурами антител и клеточных рецепторов.

Костный мозг - центральный кроветворный орган, в котором находится самоподдерживающаяся популяция стволовых кроветворных клеток и образуются клетки как миелоидного, так и лимфоидного ряда.

Сумка Фабрициуса - центральный орган иммунопоэза у птиц, где происходит развитие В-лимфоцитов, находится в области клоаки. Для ее микроскопического строения характерно наличие многочисленных складок, покрытых эпителием, в которых расположены лимфоидные узелки, ограниченные мембраной. В узелках содержатся эпителиоциты и лимфоциты на различных стадиях дифференцировки.

B -лимфоциты и плазмоциты. B-лимфоциты являются основными клетками, участвующими в гуморальном иммунитете. У человека они образуются из СКК красного костного мозга, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов - селезенки, лимфатических узлов, лимфоид-ные фолликулы многих внутренних органов.

Для В-лимфоцитов характерно наличие на плазмолемме поверхностных иммуноглобулиновых рецепторов (SIg или mlg) для антигенов.

При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

Дифференцировка . Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.

Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг или фабрициева сумка у птиц) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение (ретикулярная строма или ретикулоэпителиальные клетки в тимусе).

Антигензависимая пролиферация и дифференцировка Т- и В-лимфо-цитов происходят при встрече с антигенами в периферических лимфоид-ных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене).

6 Участие клеток крови и соединительной ткани в защитных реакциях (гранулоциты, моноциты - макрофаги, тучные клетки).

Гранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и сегментированные ядра.

Нейтрофильные гранулоциты - самая многочисленная группа лейкоцитов, составляющая 2,0-5,5 10 9 л крови. Их диаметр в мазке крови 10-12 мкм, а в капле свежей крови 7-9 мкм. В популяции нейтрофилов крови могут находиться клетки различной степени зрелости - юные, палочкоядерные и сегментоядерные. В цитоплазме нейтрофилов видна зернистость.

В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки.

Во внутренней части цитоплазмы расположены органеллы (аппарат Гольджи, гранулярный эндоплазматический ретикулум, единичные митохондрии).

В нейтрофилах можно различить два типа гранул: специфические и азурофильные, окруженные одинарной мембраной.

Основная функция нейтрофилов - фагоцитоз микроорганизмов, поэтому их называют микрофагами.

Продолжительность жизни нейтрофилов составляет 5-9 сут. Эозинофильные грамулоциты . Количество эозинофилов в крови составляет 0,02- 0,3 10 9 л. Их диаметр в мазке крови 12-14 мкм, в капле свежей крови - 9-10 мкм. В цитоплазме расположены органеллы - аппарат Гольджи (около ядра), немногочисленные митохондрии, актиновые филаменты в кортексе цитоплазмы под плазмолеммой и гранулы. Среди гранул различают азурофильные (первичные) и эозинофильные (вторичные) .

Базофильные гранулоциты . Количество базофилов в крови составляет 0-0,06 10 9 /л. Их диаметр в мазке крови равен 11 - 12 мкм, в капле свежей крови - около 9 мкм. В цитоплазме выявляются все виды органелл - эндоплазматическая сеть, рибосомы, аппарат Гольджи, митохондрии, актиновые фила-менты.

Функции . Базофилы опосредуют воспаление и секретируют эозинофильный хемотаксический фактор, образуют биологически активные метаболиты арахидоновой кислоты - лейкотриены, простагландины.

Продолжительность жизни . Базофилы находятся в крови около 1-2 сут.

Моноциты . В капле свежей крови этих клеток 9-12 мкм, в мазке крови 18-20 мкм.

В ядре моноцита содержится одно или несколько маленьких ядрышек.

Цитоплазма моноцитов менее базофильна, чем цитоплазма лимфоцитов, в ней содержится различное количество очень мелких азурофильных зерен (лизосом).

Характерны наличие пальцеобразных выростов цитоплазмы и образование фагоцитарных вакуолей. В цитоплазме расположено множество пиноцитозных везикул. Имеются короткие канальцы гранулярной эндоплазматической сети, а также небольшие по размеру митохондрии. Моноциты относятся к макрофагической системе организма, или к так называемой мононуклеарной фагоцитарной системе (МФС). Клетки этой системы характеризуются происхождением из промоноцитов костного мозга, способностью прикрепляться к поверхности стекла, активностью пиноцитоза и иммунного фагоцитоза, наличием на мембране рецепторов для иммуноглобулинов и комплемента.

Моноциты, выселяющиеся в ткани, превращаются в макрофаги , при этом у них появляются большое количество лизосом, фагосом, фаголизосом.

Тучные клетки (тканевые базофилы, лаброциты). Этими терминами называют клетки, в цитоплазме которых находится специфическая зернистость, напоминающая гранулы базофильных лейкоцитов. Тучные клетки являются регуляторами местного гомеостаза соединительной ткани. Они принимают участие в понижении свертывания крови, повышении проницаемости гематотканевого барьера, в процессе воспаления, иммуногенеза и др.

У человека тучные клетки обнаруживаются всюду, где имеются прослойки рыхлой волокнистой соединительной ткани. Особенно много тканевых базофилов в стенке органов желудочно-кишечного тракта, матке, молочной железе, тимусе (вилочковая железа), миндалинах.

Тучные клетки способны к секреции и выбросу своих гранул. Деграну-ляция тучных клеток может происходить в ответ на любое изменение физиологических условий и действие патогенов. Выброс гранул, содержащих биологически активные вещества, изменяет местный или общий гомеостаз. Но выход биогенных аминов из тучной клетки может происходить и путем секреции растворимых компонентов через поры клеточных мембран с запу-стеванием гранул (секреция гистамина). Гистамин немедленно вызывает расширение кровеносных капилляров и повышает их проницаемость, что проявляется в локальных отеках. Он обладает также выраженным гипотензивным действием и является важным медиатором воспаления.

7 Гисто-функциональная характеристика и особенности организации серого и белого вещества в спинном мозге, стволе мозжечка и больших полушариях головного мозга.

Спинной мозг серое вещество белое вещество .

Серое вещество

рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога

Белое вещество

Мозжечок белом веществе

В коре мозжечка различают три слоя: наружный - молекулярный , средний - ганглионарный слой, или слой грушевидных нейронов , и внутренний - зернистый .

Большие полушария . Полушарие большого мозга снаружи покрыто тонкой пластинкой серого вещества - корой большого мозга.

Кора большого мозга (плащ) представлена серым веществом, расположенным по периферии полушарий большого мозга.

Помимо коры, образующей поверхностные слои конечного мозга, серое вещество в каждом из полушарий большого мозга залегает в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления серого вещества в связи с их положением получили наименование базальных (подкорковых, центральных) ядер (узлов). К базальным ядрам полушарий относят полосатое тело, состоящее из хвостатого и чечевицеобразного ядер; ограду и миндалевидное тело.

8 Головной мозг. Общая морфо-функциональная характеристика больших полушарий. Эмбриогенез. Нейронная организация коры больших полушарий. Понятие о колонках и модулях. Миелоархитектоника. Возрастные изменения коры.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.

Строение. Кора большого мозга представлена слоем серого вещества. Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга.. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями.

Развитие коры больших полушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в формирующуюся корковую пластинку. Вначале в корковую пластинку поступают нейроциты будущих I и VI слоев, т.е. наиболее поверхностного и глубокого слоев коры. Затем в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших участках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохрон-но). В каждом из этих участков образуются группы нейронов, последовательно выстраивающихся вдоль одного или нескольких волокон радиальной глии в виде колонки.

Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоев: I - молекулярный , II - наружный зернистый , III - nu рамидных нейронов , IV - внутренний зернистый , V - ганглионарный , VI - слой полиморфных клеток .

Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их нейриты проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя.

Наружный зернистый слой образован мелкими нейронами, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молекулярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.

Самый широкий слой коры большого мозга - пирамидный . От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Нейрит пирамидной клетки всегда отходит от ее основания.

Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон.

Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды .

Слой полиморфных клеток образован нейронами различной формы.

Модуль . Структурно-функциональной единицей неокортекса является модуль . Модуль организован вокруг кортико-кортикального волокна, представляющего собой волокно, идущее либо от пирамидных клеток того же полушария (ассоциативное волокно), либо от противоположного (комиссуральное).

Тормозная система модуля представлена следующими типами нейронов: 1) клетки с аксональной кисточкой ; 2) корзинчатые нейроны ; 3) аксоаксональные нейроны ; 4) клетки с двойным букетом дендритов.

Миелоархитектоника коры. Среди нервных волокон коры полушарий большого мозга можно выделить ассоциативные волокна, связывающие отдельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов центральной нервной системы.

Возрастные изменения . На 1-м году жизни наблюдаются типизация формы пирамидных и звездчатых нейронов, их увеличение, развитие дендритных и аксонных арборизаций, внутриансамблевых связей по вертикали. К 3 годам в ансамблях выявляются «гнездные» группировки нейронов, более четко сформированные вертикальные дендритные пучки и пучки радиарных волокон. К 5-6 годам нарастает полиморфизм нейронов; усложняется система внутриансамблевых связей по горизонтали за счет роста в длину и разветвлений боковых и базальных дендритов пирамидных нейронов и развития боковых терминалей их апикальных дендритов. К 9-10 годам увеличиваются клеточные группировки, значительно усложняется структура короткоаксонных нейронов, и расширяется сеть аксонных колла-тералей всех форм интернейронов. К 12-14 годам в ансамблях четко обозначаются специализированные формы пирамидных нейронов, все типы интернейронов достигают высокого уровня дифференцировки. К 18 годам ансамблевая организация коры по основным параметрам своей архитектоники достигает уровня таковой у взрослых.

9 Мозжечок. Строение и функциональная характеристика. Нейронный состав коры мозжечка. Глиоциты. Межнейрональные связи.

Мозжечок . Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мохжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества - корой.

В коре мозжечка различают три слоя: наружный - молекулярный , средний - ганглионарный слой, или слой грушевидных нейронов , и внутренний - зернистый .

Ганглиозный слой содержит грушевидные нейроны . Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей. От грушевидного тела в молекулярный слой отходят 2-3 дендрита, которые пронизывают всю толщу молекулярного слоя. От основания тел этих клеток отходят нейриты, проходящие через зернистый слой коры мозжечка в белое вещество и заканчивающиеся на клетках ядер мозжечка. Молекулярный слой содержит два основных вида нейронов: кор-зинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными нейронами.

Звездчатые нейроны лежат выше корзинчатых и эывают двух типов. Мелкие звездчатые нейроны снабжены тонкими короткими дендритами и слаборазветвленными нейритами, образующими синапсы. Крупные звездчатые нейроны имеют длинные и сильно разветвленные дендриты и нейриты.

Зернистый слой . Первым типом клеток этого слоя можно считать зерновидные нейроны, или клетки-зерна . Клетка имеет 3-4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы.

Нейриты клеток-зерен проходят в молекулярный слой и в нем делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка.

Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны . Различают два вида таких клеток: с короткими и длинными нейритами. Нейроны с короткими нейритами лежат вблизи ганг-лионарного слоя. Их разветвленные дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами - аксонами клеток-зерен. Нейриты направляются в зернистый слой к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зерен. Немногочисленные звездчатые нейроны с длинными нейритами имеют обильно ветвящиеся в зернистом слое дендриты и нейриты, выходящие в белое вещество.

Третий тип клеток составляют веретеновидные горизонтальные клетки . Они имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Нейриты же этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.

Глиоциты . Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка.

Межнейрональные связи . Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и так называемыми лазящими волокнами.

Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и опосредованно через клетки-зерна оказывают на грушевидные клетки возбуждающее действие.

Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам.

10 Спинной мозг. Морфо-Функциональная характеристика. Развитие. Строение серого и белого вещества. Нейронный состав. Чувствительные и двигательные пути спинного мозга, как примеры рефлекторных дут.

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее - это его серое вещество . На периферии спинного мозга располагается более светлое белое вещество .

Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны.

Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога . В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоникауказанных пластин: I-V пластины соответствуют задним рогам, VI-VII пластины - промежуточной зоне, VIII-IX пластины - передним рогам, X пластина - зона околоцентрального канала.

Серое вещество мозга состоит из мультиполярных нейронов трех типов. Первый тип нейронов является филогенетически более древним и характеризуется немногочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами.

Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.

Нейроциты. Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами. Среди нейронов спинного мозга можно выделить следующие виды клеток: корешковые клетки , нейриты которых покидают спинной мозг в составе его передних корешков, внутренние клетки , отростки которых заканчиваются синапсами в пределах серого вещества спинного мозга, и пучковые клетки , аксоны которых проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии.

11 Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение и функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Классификация. По особенностям строения артерии бывают трех типов: эластического, мышечного и смешанного (мышечно-эластичес-кого).

Артерии эластического типа характеризуются выраженным развитием в их средней оболочке эластических структур (мембраны, волокна). К ним относятся сосуды крупного калибра, такие как аорта и легочная артерия. Артерии крупного калибра выполняют главным образом транспортную функцию. В качестве примера сосуда эластического типа рассматривается строение аорты.

Внутренняя оболочка аорты включает эндотелий , подэндотелиальный слой и сплетение эластических волокон . Эндотелий аорты человека состоит из клеток, различных по форме и размерам, расположенных на базальной мембране. В эндотелиальных клетках слабо развита эндоплазматическая сеть гранулярного типа. Подэндотелиальный слой состоит из рыхлой тонкофибриллярной соединительной ткани, богатой клетками звездчатой формы. В последних обнаруживается большое количество пиноцитозных пузырьков и микрофиламентов, а также эндоплазматическая сеть гранулярного типа. Эти клетки поддерживают эндотелий. В подэндотелиальном слое встречаются гладкие мышечные клетки (гладкие миоциты).

Глубже подэндотелиального слоя в составе внутренней оболочки расположено густое сплетение эластических волокон, соответствующее внутренней эластической мембране .

Внутренняя оболочка аорты в месте отхождения от сердца образует три карманоподобные створки («полулунные клапаны»).

Средняя оболочка аорты состоит из большого количества эластических окончатых мембран , связанны между собой эластическими волокнами и образующих единый эластический каркас вместе с эластическими элементами других оболочек.

Между мембранами средней оболочки артерии эластического типа залегают гладкие мышечные клетки, косо расположенные по отношению к мембранам.

Наружная оболочка аорты построена из рыхлой волокнистой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон .

К артериям мышечного типа относятся преимущественно сосуды среднего и мелкого калибра, т.е. большинство артерий организма (артерии тела, конечностей и внутренних органов).

В стенках этих артерий имеется относительно большое количество гладких мышечных клеток, что обеспечивает дополнительную нагнетающую силу их и регулирует приток крови к органам.

В состав внутренней оболочки входят эндотелий с базальной мембраной, подэндотелиальный слой и внутренняя эластическая мембрана.

Средняя оболочка артерии содержит гладкие мышечные клетки, между которыми находятся соединительнотканные клетки и волокна (коллагеновые и эластические). Коллагеновые волокна образуют опорный каркас для гладких миоцитов. В артериях обнаружен коллаген I, II, IV, V типа. Спиральное расположение мышечных клеток обеспечивает при сокращении уменьшение объема сосуда и проталкивание крови. Эластические волокна стенки артерии на границе с наружной и внутренней оболочками сливаются с эластическими мембранами.

Гладкие мышечные клетки средней оболочки артерий мышечного типа своими сокращениями поддерживают кровяное давление, регулируют приток крови в сосуды микроциркуляторного русла органов.

На границе между средней и наружной оболочками располагается наружная эластическая мембрана . Она состоит из эластических волокон.

Наружная оболочка состоит из рыхлой волокнистой соединительной ткани . В этой оболочке постоянно встречаются нервы и кровеносные сосуды, питающие стенку.

Артерии мышечно-эластического типа . К ним относятся, в частности, сонная и подключичная артерии. Внутренняя оболочка этих сосудов состоит из эндотелия, расположенного на базальной мембране, подэндотелиального слоя и внутренней эластической мембраны. Эта мембрана располагается на границе внутренней и средней оболочек.

Средняя оболочка артерий смешанного типа состоит из гладких мышечных клеток, спирально ориентированных эластических волокон и окончатых эластических мембран. Между гладкими мышечными клетками и эластическими элементами обнаруживается небольшое количество фибробластов и коллагеновых волокон.

В наружной оболочке артерий можно выделить два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительнотканных клеток.

Возрастные изменения . Развитие сосудов под влиянием функциональной нагрузки заканчивается примерно к 30 годам. В дальнейшем в стенках артерий происходит разрастание соединительной ткани, что ведет к их уплотнению. После 60-70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в результате чего в крупных артериях внутренняя оболочка по размерам приближается к средней. В мелких и средних артериях внутренняя оболочка разрастается слабее. Внутренняя эластическая мембрана с возрастом постепенно истончается и расщепляется. Мышечные клетки средней оболочки атрофируются. Эластические волокна подвергаются зернистому распаду и фрагментации, в то время как коллагеновые волокна разрастаются. Одновременно с этим во внутренней и средней оболочках у пожилых людей появляются известковые и липидные отложения, которые прогрессируют с возрастом. В наружной оболочке у лиц старше 60-70 лет возникают продольно лежащие пучки гладких мышечных клеток.

12 Лимфатические сосуды. Классификация. Морфо-функциональная характеристика. Источники развития. Строение и функции лимфатических капилляров и лимфатических сосудов.

Лимфатические сосуды - часть лимфатической системы, включающей в себя еще и лимфатические узлы. В функциональном отношении лимфатические сосуды тесно связаны с кровеносными, особенно в области расположения сосудов микроциркуляторного русла. Именно здесь происходят образование тканевой жидкости и проникновение ее в лимфатическое русло.

Через мелкие лимфоносные пути осуществляются постоянная миграция лимфоцитов из кровотока и их рециркуляция из лимфатических узлов в кровь.

Классификация. Среди лимфатических сосудов различают лимфатические капилляры, интра- и экстраорганные лимфатические сосуды, отводящие лимфу от органов, и главные лимфатические стволы тела - грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. По строению различают лимфатические сосуды безмышечного (волокнисто мышечного типов.

Лимфатические капилляры. Лимфатические капилляры - начальные отделы лимфатической системы, в которые из тканей поступает тканевая жидкость вместе с продуктами обмена веществ.

Лимфатические капилляры представляют собой систему замкнутых с одного конца трубок, анастомозирующих друг с другом и пронизывающих органы. Стенка лимфатических капилляров состоит из эндотелиальных клеток. Базальная мембрана и перициты в лимфатических капиллярах отсутствуют. Эндотелиальная выстилка лимфатического капилляра тесно связана с окружающей соединительной тканью с помощью стропных, или фиксирующих, филаментов, которые вплетаются в коллагеновые волокна, расположенные вдоль лимфатических капилляров. Лимфатические капилляры и начальные отделы отводящих лимфатических сосудов обеспечивают гематолимфатическое равновесие как необходимое условие микроциркуляции в здоровом организме.

Отводящие лимфатические сосуды. Основной отличительной особенностью строения лимфатических сосудов является наличие в них клапанов и хорошо развитой наружной оболочки. В местах расположения клапанов лимфатические сосуды колбовидно расширяются.

Лимфатические сосуды в зависимости от диаметра подразделяются на мелкие, средние и крупные. Эти сосуды по своему строению могут быть безмышечными и мышечными.

В мелких сосудах мышечные элементы отсутствуют и их стенка состоит из эндотелия и соединительнотканной оболочки, кроме клапанов.

Средние и крупные лимфатические сосуды имеют три хорошо развитые оболочки: внутреннюю, среднюю и наружную.

Во внутренней оболочке, покрытой эндотелием, находятся продольно и косо направленные пучки коллагеновых и эластических волокон. Дупликатура внутренней оболочки формирует многочисленные клапаны. Участки, расположенные между двумя соседними клапанами, называются клапанным сегментом, или лимфангионом. В лимфангионе выделяют мышечную манжетку, стенку клапанного синуса и область прикрепления клапана.

Средняя оболочка. В стенке этих сосудов находятся пучки гладких мышечных клеток, имеющие циркулярное и косое направление. Эластические волокна в средней оболочке могут различаться по количеству, толщине и направлению.

Наружная оболочка лимфатических сосудов образована рыхлой волокнистой неоформленной соединительной тканью. Иногда в наружной оболочке встречаются отдельные продольно направленные гладкие мышечные клетки.

В качестве примера строения крупного лимфатического сосуда рассмотрим один из главных лимфатических стволов - грудной лимфатический проток. Внутренняя и средняя оболочки выражены относительно слабо. Цитоплазма эндотелиальных клеток богата пиноцитозными пузырьками. Это указывает на активный трансэндотелиальный транспорт жидкости. Базальная часть клеток неровная. Сплошной базальной мембраны нет.

В подэндотелиальном слое залегают пучки коллагеновых фибрилл. Несколько глубже находятся единичные гладкие мышечные клетки, имеющие во внутренней оболочке продольное, а в средней - косое и циркулярное направление. На границе внутренней и средней оболочек иногда встречается плотное сплетение тонких эластических волокон, которое сравнивают с внутренней эластической мембраной.

В средней оболочке расположение эластических волокон в основном совпадает с циркулярным и косым направлением пучков гладких мышечных клеток.

Наружная оболочка грудного лимфатического протока содержит продольно лежащие пучки гладких мышечных клеток, разделенные прослойками соединительной ткани.

13 Сердечно-сосудистая система. Общая морфо-функциональная характеристика. Классификация сосудов. Развитие, строение, взаимосвязь гемодинамических условий и строения сосудов. Принцип иннервации сосудов. Регенерация сосудов.

Сердечно-сосудистая система - совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически активные вещества, газы, продукты метаболизма.

Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями.

Вкровеносной системе различают артерии, артериолы, гемокапилляры, венулы, вены и артериоло- венулярные анастомозы. Взаимосвязь между артериями и венами осуществляется системой сосудов микроциркуляторного русла.

По артериям кровь течет от сердца к органам. Как правило, эта кровь насыщена кислородом, за исключением легочной артерии, несущей венозную кровь. По венам кровь" притекает к сердцу и содержит в отличие от крови легочных вен мало кислорода. Гемокапилляры соединяют артериальное звено кровеносной системы с венозным, кроме так называемых чудесных сетей , в которых капилляры находятся между двумя одноименными сосудами (например, между артериями в клубочках почки).

Гемодинамические условия (кровяное давление, скорость кровотока), которые создаются в различных частях тела, обусловливают появление специфических особенностей строения стенки внутриорганных и внеорганных сосудов.

Сосуды (артерии, вены, лимфатические сосуды ) имеют сходный план строения. За исключением капилляров и некоторых вен, все они содержат 3 оболочки:

Внутренняя оболочка: Эндотелий - слой плоских клеток (лежащих на базальной мембране), который обращён в сосудистое русло.

Подэндотелиальный слой состоит из рыхлой соединительной ткани. и гладкие миоциты. Специальные эластические структуры (волокна или мембраны).

Средняя оболочка : гладкие миоциты и межклеточное вещество (протеогликаны, гликопротеины, эластические и коллагеновые волокна).

Наружная оболочка : рыхлая волокнистая соединительная ткань, содержатся эластические и коллагеновые волокна, а также адипоциты, пучки миоцитов. Сосуды сосудов (vasa vasorum), лимфатические капилляры и нервные стволы.