Метаболизм жировой ткани. Метаболизм жирных кислот


Некоторые химические вещества , входящие в состав пищи и тканей тела, классифицируют как липиды. К ним относят: (1) нейтральные жиры, известные как триглицериды^ (2) фосфолипиды; (3) холестерол; (4) некоторые другие вещества, менее важные. Основной частью химической структуры триглицеридов и фосфолипидов являются жирные кислоты, представляющие собой простые углеводородные органические кислоты с длинной цепочкой. Так, типичная жирная кислота - пальмитиновая, она может быть представлена как СНз(СН2)14СООН.

Холестерол не содержит жирных кислот, но его стерольное ядро образовано частью молекулы жирной кислоты, что обусловливает его физические и химические свойства, характерные для вещества, относящегося к липидам.

Организм использует триглицериды главным образом в качестве источника энергии для различных метаболических процессов, что функционально роднит их с углеводами. Однако некоторые липиды, особенно холестерол, фосфолипиды и небольшая часть триглицеридов, используются организмом в формировании мембран и прочих структурных компонентов клеток, т.е. выполняют пластические функции.

Основа химического строения триглицеридов (нейтральных жиров). Поскольку в данной главе по большей части рассматриваются вопросы, связанные с использованием триглицеридов в качестве источника энергии, необходимо создать представление о химической структуре этих веществ.

Обратите внимание, что 3 молекулы жирных кислот с длинной цепочкой связаны с 1 молекулой глицерола, образуя типичную структуру триглицерида. В образовании триглицеридов в организме человека чаще всего участвуют три жирные кислоты: (1) стеариновая кислота (см. формулу тристеарина), которая включает цепочку из 18 углеродных фрагментов с полностью насыщенными водородом связями; (2) олеиновая кислота, также состоящая из 18-углеродной цепочки, но имеющей одну двойную связь в середине цепочки; (3) пальмитиновая кислота, включающая 16 атомов углерода с полностью насыщенными связями.

Почти все жиры, присутствующие в пище , за исключением жиров, содержащих жирные кислоты с короткой цепочкой, всасываются из кишечника в лимфу. Во время пищеварения большинство триглицеридов расщепляются до моноглицеридов и жирных кислот. Затем во время прохождения через эпителиоциты кишечника моноглицериды и жирные кислоты ресинтезируются в новые молекулы триглицеридов, которые попадают в лимфу в виде мелкодисперсных капелек, названных хиломикронами. Диаметр хиломикронов колеблется от 0,08 до 0,6 мкм. Небольшие количества апопротеина В абсорбируются на наружной поверхности хиломикронов. Часть молекулы белка, оставшаяся свободной, выступает в водную фазу, что увеличивает суспензионную стабильность хиломикронов в лимфе и препятствует их прилипанию к стенкам лимфатических сосудов.

Большая часть холестерола и фосфолипидов , всасываемых из желудочно-кишечного тракта, входит в состав хиломикронов. Таким образом, хиломикроны состоят главным образом из триглицеридов, а также содержат 9% фосфолипидов, 3% холестерола и около 1% апопротеина В. Образующиеся хиломикроны затем транспортируются вверх по грудному протоку и вместе с лимфой попадают в кровеносную систему в области впадения яремной и подключичной вен.

Почти через час после приема пищи , содержащей большое количество жира, концентрация хиломикронов в плазме может увеличиться и составить от 1 до 2% общего количества плазмы. Из-за больших размеров хиломикронов плазма становится мутной и иногда желтой, но поскольку период полураспада хиломикронов составляет меньше 1 ч, плазма вновь становится прозрачной через несколько часов. Жиры, содержащиеся в хиломикронах, извлекаются следующим образом.

Триглицериды хиломикронов гидролизуются липопротеинлипазой. Жиры хранятся в клетках жировой ткани и клетках печени. Большая часть хиломикронов извлекается из циркулирующей крови во время прохождения по капиллярам жировой ткани или печени. Как жировая ткань, так и печень содержат большое количество фермента липопротеинлипазы. Этот фермент особенно активен в эндотелии капилляров, где он гидролизует триглицериды хиломикронов, когда те контактируют с эндотелием капиллярной стенки, что приводит к высвобождению жирных кислот и глицерола.

Жирные кислоты , обладая способностью проникать через мембраны клеток, легко диффундируют через мембраны адипоцитов жировой ткани в клетки печени. Оказавшись внутри клеток, жирные кислоты вновь превращаются в триглицериды, взаимодействуя с глицеролом, образующимся в результате метаболических процессов в клетках, выполняющих функции депонирования (что будет рассмотрено далее). Липопротеин-липаза вызывает также гидролиз фосфолипидов, что, в свою очередь, приводит к выделению жирных кислот, преобразующихся в триглицериды и депонирующихся, как уже обсуждалось.

Гидролитические ферменты . Жиры составляют важную часть пищи. Их частичный гидролиз происходит в пищеварительном тракте. Факт их переваривания вызывает некоторое недоумение, поскольку пищеварительные ферменты водорастворимы, а жиры гидрофобны. Объяснение этого факта состоит в том, что ферменты сорбируются на липидных субстратах, причем контакт между ними обеспечивается желчью, которая содержит желчные кислоты. Желчные кислоты, взаимодействуя с липидами, образуют очень тонкие и устойчивые эмульсии. Кроме того, желчные кислоты растворяют жирные кислоты, освобождающиеся в ходе ферментативного гидролиза, что позволяет возобновляться фермент-липидному комплексу.

Панкреатический сок содержит липазу, гидролизующую триглицериды до моно- и диглицеридов. В первую очередь отщепляются жирные кислоты от первичных атомов глицерина. В продуктах переваривания около половины молекул гидролизуются полностью до жирных кислот и глицерина. Фофолипиды гидролизуются фосфолипазой В, которая отделяет жирную кислоту по первичной спиртовой группе. Продукты переваривания всасываются в тонком кишечнике. Для всасывания также необходимо присутствие эмульгирующих веществ – желчных кислот и желчи. В кишечнике часть липидов ресинтезируется и в форме микроскопических капелек попадают в лимфатическую систему. В крови и лимфе липиды соединяются с белками, образуя липопротеиды. В крови присутствует фермент липопротеидлипаза, ее активирует гепарин. Эта липаза отделяет часть жирных кислот от триглицеридов. Кислоты соединяются с сывороточным альбумином и переносятся в печень.

Окисление жирных кислот . Идет во многих тканях, особенно в печени, легких, почках и сердце. Жирные кислоты окисляются по второму от карбоксильной группы углероду. Механизм β-окисления прояснился после открытия Липманом и Нахмансоном кофермента А, они выяснили механизм действия этого кофермента.

Стадии окисления жирных кислот .

1. Активация жирных кислот коферментом А. Под действием специфической тиолипазы жирных кислот КоА присоединяется тиоэфирной связью с карбоксильной группой жирной кислоты. Эта реакция протекает в области наружной мембраны митохондрий:

R-СН 2 -СН 2 -СООН + НS-КоА →

→R-СН 2 -СН 2 -СО~ S-КоА +АМФ+ ф

Реакция требует присутствия ионов марганца.

2. Проникновение ацил-КоА в митохондрию. Для прохождения через митохондриальную мембрану ацил-КоА должен прореагировать с аминированной оксикислотой – карнитином. Реакция катализируется ферментом карнитин-ацилтрансферазой.

Обратная реакция идет внутри митохондрии. Тиоэфирная связь разрывается. КоА может вернуться в цитоплазму, а может попасть для окисления в цикл Кребса.


Расщепление пальмитиновой кислоты, имеющей 16 атомов углерода происходит следующим образом:

Сначала образуется пальмитоил-КоА

3. Еще одна реакция дегидрирования, с образованием НАДН2

4. Гидролитическое расщепление по β-атому углерода с образованием ацетил- КоА, а по месту расщепления к укороченному остатку кислоты присоединяется другая молекула КоА.

Суммарная реакция окисления пальмитиновой кислоты:

Пальмитоил-КоА→ 8 ацетил-КоА +ФАДН2 + НАДН2

Эти продукты реакции в митохондриях переходят в цикл Кребса и дыхательную цепь, где в результате дальнейших превращений каждая молекула ФАДН 2 дает 2 молекулы АТФ, каждая молекула НАДН 2 дает 3 молекулы АТФ, восемь молекул ацетил-КоА дают в ходе окисления в цикле Кребса 96 молекул АТФ. Можно подвести итоговый энергетический баланс: при окислении одной молекулы пальмитиновой кислоты на активацию затрачена 1 молекула АТФ, прошло 7 циклов окисления, получено 130 молекул АТФ дополнительно. Окисление каждой молекулы ЖК, имеющей n атомов углерода, проходит n-1 циклов окисления.

Синтез жирных кислот . Жирные кислоты синтезируются в условиях, когда пища доставляет достаточное количество энергии для всех существенных нужд организма. Однако небольшое количество жирных кислот необходимо для структурных липидов и должно синтезироваться в любых условиях. Синтез жирных кислот может намного превышать потребности организма, и в этом случае липиды начинают откладываться про запас, особенно в жировых тканях.

Биосинтез жирных кислот – процесс в основном цитоплазматический. Отправной точкой служит ацетил-КоА. Частично он поступает из сферы митохондриального метаболизма.

Таблица 7

Превращения и передвижения митохондриального

Метаболизм жиров имеет два направления, не смотря на цель его прогрессирования. Если вы во время приема пищи потребили больше калорий, чем было необходимо вашему организму, то случается анаболизм, то есть, депонирование и связывание жиров. В случае, когда организму энергии недостаточно, метаболизм жиров происходит в обратном направлении. Случается высвобождение энергии и расщепление отложенных жировых запасов. Данный процесс имеет свое название - катаболизм.

Когда пищевые жиры попадают в организм человека, за их переработку отвечает не желудок, как думает большинство людей. За выполнение данной функции отвечает печень. Все жиры, исключением является холестерин, перерабатываются в триглицериды, потом соединяются с аминокислотами и выбрасываются в кровь. Если во время трапезы вы потребили большое количество углеводов, в особенности простых сахаров, то печень их трансформирует также в триглицериды.

Молекула триглицерида является сочетанием трех жирных кислот и глицерина. Все неусвоенные в организме триглицериды присоединяются к жировым клеткам и сохраняются там до того момента, пока не появится необходимость в перекрытии дефицита энергии. Если дефицита такого типа не наблюдается, то естественно прогрессирует ожирение.

Если дефицит энергии появился, то, прежде всего в ход идет сахар, который содержится в крови, после него используется запас гликогена печени, затем запускается процесс катаболизма, который заключается в расщеплении триглицеридов. В клетках человеческого организма есть встроенные «мини-электростанции» под названием митохондрии, в них идет процесс усвоения жирных кислот.

В процессе расщепления триглицеридов выпускаются продукты распада (кетоны). Их переизбыток несет за собой особую опасность для человеческого организма. Именно это является причиной тошноты, неприятного привкуса ацетона во рту и слабости при голодании. Это последствие интенсивного сжигания триглицеридов. Уровень метаболизма жиров должен быть стабильным, во избежание возникновения негативных явлений, типа кетоацидоза.

Метаболизм жиров замедляется с возрастом. Все клетки человеческого организма со временем стареют, и хуже функционируют, поэтому после сорока лет важно контролировать свой вес, во избежание возникновения осложнений в результате непосильных нагрузок на органы. Если фигура подтянута, а человек энергичен, то можно не волноваться за свое здоровье, ведь здесь мало шансов на развитие проблем с сердцем или появление высокого давления, одышки.

Регулярные умеренные физические нагрузки помогают поддерживать стабильно высокий уровень метаболизма жиров. Способность человеческого организма проводить катаболические реакции связана с размером мышечной ткани, а также с ее тонусом. Если человек держит себя в отличной физической форме, регулярно делает зарядку по утрам, пару раз на неделю ходит в танцевальный класс или тренажерный зал, это, в первую очередь поможет избежать возникновения новых жиров и постепенно спровоцирует сжигание старых.

Нарушения метаболизма жиров появляются у людей, которые изводят себя жесткой несбалансированной диетой или голоданием. В подобных стрессовых ситуациях организм человека привыкает тратить мало энергии, общий вес уменьшается, тратится половина мышечных волокон. И когда похудевший человек заново питается по-прежнему, он набирает килограммы в два раза быстрее, чем до этого.

В триацилглицеринах (жирах) жировой ткани человека в основ­ном содержатся следующие жирные кислоты: миристиновая (3%), паль­митиновая (20%), стеариновая (5%), пальмитоолеиновая (5%), олеино­вая (55%), линолевая (10%), арахидоновая (0,2%). В значительных ко­личествах эти жирные кислоты содержатся и в других липидах, но жирнокислотный состав гликолипидов и фосфолипидов клеточных мембран гораздо более разнообразен. Особенно много характерных жирных ки­слот найдено в сложных липидах нервных клеток.

Источниками жирных кислот организма служат липиды пищи (главным образом жиры) и синтез жирных кислот из углеводов.

Расходуются жирные кислоты в основном по трем направлениям (рис.33):

Включаются в состав резервных жиров;

Включаются в состав структурных липидов;

Окисляются до углекислого газа и воды с использованием вы­деляющейся при этом энергии для синтеза АТФ.

Рис. 33. Метаболизм жирных кислот

Все превращения сложных жирных кислот в клетках начинаются с образования Ацил-КоА (активация жирных кислот):

СН 3 -(СН 2) n -СН 2 -СН 2 -СООН + HSKoA + АТФ

СН 3 -(СН 2) n -СН 2 -СН 2 -С ~SKoA + АМФ + Н 4 Р 2 О 7

Дальнейший катаболизм жирных кислот можно разделить на три стадии:

1) β-окисление - специфический для жирных кислот путь мета­болизма, завершающийся превращением молекулы жирной кислоты в несколько молекул Ацетил-КоА;

2) цикл Кребса, в котором окисляются ацетильные остатки;

3) Митохондриальная дыхательная цепь.

Процесс активации жирных кислот протекает в цитоплазме, а β-окисление активированных кислот происходит в матриксе митохондрий при участии мультиферментного комплекса. Мембрана митохондрий не­проницаема для жирных кислот; их перенос происходит при участии карнитина:

При действии карнитин-ацилтрансферазы к спиртовой группе карнитина присоединяется ацильный остаток жирной кислоты (сложно-эфирной связью):

Ацилкартинин

Образующийся ацилкарнитин может диффундировать в мито­хондрию, где происходит обратная реакция с образованием Ацил-КоА.

В матриксе митохондрий происходит β-окисление поступившего Ацил-КоА. При β-окислении окисляется группа –СН 2 - в β-положении по отношению к группе -СО-:

(Ацил-КоА) Ацетил-КоА

Новый Ацил-КоА вновь подвергается β-окислению. Многократное повторение этого процесса приводит к полному распаду жирной кислоты до Ацетил-КоА. Напиример, молекула пальмитиновой кислоты, содержащая 16 атомов углерода, превращаясь в 8 молекул Ацетил-КоА за 7 циклов β-окисления:

Пальмитин-КоА

Окисление кислот с нечетным числом атомов углерода и нена­сыщенных кислот имеет свои особенности.

В случае кислот с нечетным количеством атомов углерода наря­ду с обычными продуктами окисления образуется одна молекула пропионил-КоА (CH 3 -CH 2 -CO~SKoA) на молекулу окисленной жирной кислоты. Пропионил-КоА окисляется по особому пути:

Образующийся сукцинил-КоА поступает в цикл Кребса.

Особенности окисления ненасыщенных жирных кислот опреде­ляются положением и числом двойных связей в их молекулах. Окисление идет обычным путем, если каждая двойная связь имеет транс­конфигурацию. В противном случае в реакциях участвует дополнитель­ный фермент, изменяющий конфигурацию групп атомов относительно двойной связи из цис- в транс-, далее окисление идет так же, как у на­сыщенных кислот. Следует отметить, что скорость окисления ненасы­щенных жирных кислот выше, чем насыщенных. Например, по сравнению с окислением стеариновой кислоты скорость окисления олеиновой выше в 11 раз, линолевой - в 114, линоленовой - в 170 раз, а арахидоновой - почти в 200 раз.

Энергетическая ценность жирной кислоты с четным числом ато­мов углерода рассчитывается следующим образом. Если жирная кислота содержит 2n атомов углерода, то при полном ее окислении образуется n молекул ацетил-КоА и по (n-1) молекул ФАД(Н 2) и (НАД.Н + Н +). Окисление ФАД(Н 2) дает 2 АТФ, а (НАД.Н+Н +)-3 АТФ, то есть вместе - 5 АТФ или, в общем виде, 5(n-1) АТФ. Полное сгорание одной молекулы ацетил-КоА дает 12 АТФ, значит n молекул обеспечивают образование 12n АТФ. Учитывая, что 1 АТФ тратится на активирование кислоты, пол­ный баланс АТФ при окислении жирной кислоты с четным числом атомов углерода можно выразить формулой:

5(n-l)+(12n-l)=(17n-6) молекул АТФ,

где n=m/2 (m- число атомов углерода в кислоте).

Например, полный выход АТФ при окислении одной молекулы пальмитиновой кислоты составляет 130 молекул.

Энергетическая ценность жирных кислот выше, чем, например, глюкозы. Так, полное окисление капроновой кислоты, имеющей то же число атомов углерода, что и глюкоза, дает 45 молекул АТФ (глюкоза дает 38 молекул АТФ). Однако для сгорания в цикле Кребса образующих­ся при β-окислении молекул ацетил-КоА требуется достаточное количе­ство оксалоацетата. В этом отношении углеводы имеют преимущество перед жирными кислотами, так как при их распаде образуется пируват, являющийся источником образования не только ацетил-КоА, но и окса­лоацетата, то есть облегчается превращение ацетил-КоА в цикле Кребса. Не случайно в биохимической литературе бытовало выражение: "жиры сгорают в пламени углеводов", поскольку образующийся уже в гликолизе АТФ может использоваться для активирования жирных кислот в цитоплазме, а образующийся из пирувата оксалоацетат обеспечивает включение ацетил-КоА в цикл Кребса.

β-Окисление жирных кислот происходит во многих тканях, но особенно значительна роль этого источника энергии в скелетных мышцах при большой физической нагрузке, а также в сердечной мышце и в поч­ках. Сердечная мышца около 70% поглощаемого кислорода использует для окисления жирных кислот, а нервная ткань, например, вообще не использует этот источник энергии.

Часть Ацетил-КоА минует цикл Кребса и расходуется на синтез стероидов, прежде всего холестерина, и жирных кислот в цитоплазме клеток различных органов и тканей. Холестерин в наибольшей степени синтезируется в печени (80%), а также в стенках тонкого кишечника (10%)и в клетках кожи (5%). За сутки образуется 1 г холестерина в ор­ганизме, тогда как с пищей в организм поступает 0,1-0,3 г холестерина, всего 8 тканях организма холестерина приблизительно 140 г, на втором месте группа стероидов желчных кислот - приблизительно 5 г.

Биосинтез жиров

Биосинтез жиров осуществляется наиболее активно в печени и менее активно - в жировой ткани. Глюкоза является строительным мате­риалом для синтеза жирных кислот и глицерина, которые затем превра­щаются в триглицериды (рис.34). Общая схема образования жиров из глюкозы изображена ниже:

Рис. 34. Общая схема образования жиров из глюкозы

Синтез триглицеридов (жиров) из α-фосфоглицерата и Ацил-КоА осуществляется в цитозоле клеток (рис.35).

Жировая ткань представляет собой главное хранилище жира в форме триглицеридов, причем у взрослого здорового человека ко­личество ее составляет примерно 15% (10 кг у 70-килограммового мужчины - не так уж мало).

А например, в работе Filozof с соавт., которой исследовалась скорость окисления жиров у сбросивших вс. пациентов, имеющих ранее высокие степени ожирения, по сравне­нию с людьми, никогда не имеющими избыточного веса, за нормальное количество жира в теле взята средняя величина - 33±6%(!) при ИМТ 24,5±1 кг/м 2 .

Жировые клетки метаболически чрезвычайно активны. В перио­ды изобилия они, как и клетки печени, способны синтезировать жирные кислоты (ЖК) из углеводов, а в период лишений - поставлять их организму, освобождая из триглицеридов. Лдипоциты активно накапливают триглицериды, поступающие из ЖКТ в виде хиломикро­нов. Процесс отщепления ЖК от триглицеридов, входящих в состав хиломикронов, осуществляется свободной липопротеидлипазой, цир­кулирующей в крови и активирующейся гепарином, и липопротеид­липазой, локализованной в клетках кровеносных капилляров и так­же активирующейся гепарином. В принципе, любая ткань может потреблять жирные кислоты липидов хиломикронов, если она имеет соответствующую ферментную систему. Скорость высвобождения ЖК из адипоцитов резко возрастает под влиянием адреналина, в то время как связывание инсулина жировыми клетками снимает эффект адре­налина и понижает активность липазы адипоцитов (см. Липолиз). При инсулинорезистентности такого торможения инсулином высвобож­дения ЖК из депо не происходит, что приводит к существенному по­вышению их концентрации в крови после приема пищи (в так назы­ваемый постпрандиальный период, от англ, prandial - обеденный). Нарушение липидного обмена затрудняет работу мембранных рецеп­торов за счет изменения структуры клеточных мембран, что усугуб­ляет состояние инсулинорезистентности , и порочный круг за­мыкается.