Из каких слоев состоит клеточная мембрана. Наружная клеточная мембрана


text_fields

text_fields

arrow_upward

Клетки отделены от внутренней среды организма клеточной или плазматической мембраной.

Мембрана обеспечивает:

1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.

Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы - гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов - структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Ядро и органеллы клетки также отделены от цитоплазмы мембранами, которые предупреждают свободное движение воды и растворенных в ней веществ из цитоплазмы в них и наоборот. Это создает условия для разделения биохимических процессов, протекающих в различных отсеках (компартментах) внутри клетки.

Структура мембраны клетки

text_fields

text_fields

arrow_upward

Мембрана клетки - эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидоа и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные цереброзидами, сульфатидами, ганглиозидами и холестерином.

Рис. 1.1 Организация мембраны.

Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимо действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.

Белки мембраны клеток представлены, в основном, гликопротеинами. Различают:

интегральные белки , проникающие через всю толщу мембраны и
периферические белки , прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.

Периферические белки почти все функционируют как энзимы (ацетилхолинестераза, кислая и шелочная фосфатазы и др.). Но некоторые энзимы также представлены интегральными белками - АТФ-аза.

Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки - переносчики крупных молекул.

Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.

Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки . Они могут прикрепляться к мембранным белкам.

Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета - спектрином через низкомолекулярный белок анкирин (рис. 1.2).

Рис. 1.2 Схема расположения белков в примембранном цитоскелете эритроцитов.
1 - спектрин; 2 - анкирин; 3 - белок полосы 3; 4 - белок полосы 4,1; 5 - белок полосы 4,9; 6 - олигомер актина; 7 - белок 6; 8 - гпикофорин А; 9 - мембрана.

Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.

Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.

Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.

Большинство интегральных белков - гликопротеины . Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.

Особенности обмена веществ в мембране

text_fields

text_fields

arrow_upward

Мембранные компоненты подвержены многим метаболическим превращениям под влиянием ферментов, расположенных на их мембране или внутри ее. К ним относятся окислительные ферменты, играющие важную роль в модификации гидрофобных элементов мембран - холестерина и др. В мембранах же при активации ферментов - фосфолипаз происходит образование из арахидоновой кислоты биологически активных соединений - простагландинов и их производных. В результате активации метаболизма фосфолипидов в мембране образуются тромбоксаны, лейкотриены, оказывающие мощное воздействие на адгезию тромбоцитов, процесс воспаления и др.

В мембране непрерывно протекают процессы обновления ее компонентов . Так, время жизни мембранных белков колеблется от 2 до 5 дней. Однако в клетке существуют механизмы, обеспечивающие доставку вновь синтезированных молекул белка к мембранным рецепторам, облегчающим встраивание белка в мембрану. «Узнавание» данного рецептора вновь синтезированным белком облегчается образованием сигнального пептида, помогающего найти на мембране рецептор.

Липиды мембраны отличаются также значительной скоростью обмена , что требует для синтеза этих компонентов мембраны большого количества жирных кислот.
На специфику липидного состава мембран клеток влияют изменения среды обитания человека, характера его питания.

Например, увеличение в пище жирных кислот с ненасыщенными связями увеличивает жидкое состояние липидов мембран клеток различных тканей, приводит к благоприятному для функции мембраны клетки изменению отношения фосфолипидов к сфингомиелинам и липидов к белкам.

Избыток холестерина в мембранах, напротив, увеличивает микровязкость их бислоя фосфолипидных молекул, понижая скорость диффузии некоторых веществ через мембраны клеток.

Пища, обогащенная витаминами А, Е, С, Р улучшает обмен липидов в мембранах эритроцитов, снижает микровязкость мембран. Это повышает деформируемость эритроцитов, облегчает выполнение ими транспортной функции (глава 6).

Дефицит жирных кислот и холестерина в пище нарушает липидный состав и функции мембран клеток.

Например, дефицит жиров нарушает функции мембраны нейтрофилов, что угнетает их способность к движению и фагоцитозу (активный захват и поглощение микроскопических инородных живых объектов и твердых частиц одноклеточными организмами или некоторыми клетками).

В регулировании липидного состава мембран и их проницаемости, регуляции пролиферации клеток важную роль играют активные формы кислорода, образующиеся в клетке сопряженно с нормально протекающими метаболическими реакциями (микросомальным окислением и др.).

Образующиеся активные формы кислорода - супероксидный радикал (О 2), перекись водорода (H 2 О 2) и др. представляют собой чрезвычайно реакционноспособные вещества. Их основным субстратом в реакциях свободнорадикального окисления являются ненасыщенные жирные кислоты, входящие в состав фосфолипидов мембран клетки (так называемые реакции перекисного окисления липидов). Интенсификация этих реакций может вызвать повреждение мембраны клетки, ее барьерной, рецепторной и обменной функций, модификацию молекул нуклеиновых кислот и белков, что ведет к мутациям и инактивации ферментов.

В физиологических условиях интенсификация перекисного окисления липидов регулируется антиоксидазной системой клеток, представленной ферментами, инактивируюшими активные формы кислорода - супероксиддисмутазой, каталазой, пероксидазой и веществами, обладающими антиокислительной активностью - токоферолом (витамин Е), убихиноном и др. Выраженный защитный эффект на мембраны клетки (цитопротекторный эффект) при различных повреждающих воздействиях на организм оказывают простагландины Е и J2, «гася» активацию свободнорадикального окисления. Простагландины защищают слизистую желудка и гепатоциты от химических повреждений, нейроны, клетки нейроглии, кардиомиоциты - от гипоксических повреждений, скелетные мышцы — при тяжелой физической нагрузке. Простагландины, связываясь со специфическими рецепторами на клеточных мембранах стабилизируют бислой последних, уменьшают потерю мембранами фосфолипидов.

Функции рецепторов мембран

text_fields

text_fields

arrow_upward

Химический или механический сигнал вначале воспринимается рецепторами мембраны клетки. Следствием этого является химическая модификация мембранных белков, влекущая активацию «вторичных посредников», обеспечивающих быстрое распространение сигнала в клетке к ее геному, энзимам, сократительным элементам и т.д.

Схематично трансмембранная передача сигнала в клетке может быть представлена следующим образом:

1) Возбужденный воспринятым сигналом рецептор активирует у — белки мембраны клетки. Это происходит при связывании ими гуанозинтрифосфата (ГТФ).

2) Взаимодействие комплекса «ГТФ-у- белки», в свою очередь, активирует фермент - предшественник вторичных посредников, расположенный на внутренней стороне мембраны.

Предшественником одного вторичного посредника - цАМФ, образующегося из АТФ, является фермент аденилатциклаза;
Предшественником других вторичных посредников - инозитолтрифосфата и диацилглицерина, образующихся из фосфатидилинозитол-4,5-дифосфата мембраны, является фермент фосфолипаза С. Кроме того, инозитолтрифосфат мобилизует в клетке еще один вторичный посредник - ионы кальция, участвующие практически во всех регуляторных процессах в клетке. Так, например, образовавшийся инозитолтрифосфат вызывает выброс кальция из эндоплазматического ретикулума и повышение его концентрации в цитоплазме, тем самым включая различные формы клеточного ответа. С помощью инозитолтрифосфата и диацилглицерина регулируется функция гладких мышц и В-клеток поджелудочной железы ацетилхолином, передней доли гипофиза тиреогропин-релизинг фактором, ответ лимфоцитов на антиген и т.д.
В некоторых клетках роль вторичного посредника выполняет цГМФ, образующийся из ГТФ с помощью фермента гуанилатциклазы. Он служит, например, вторичным посредником для натрийуретического гормона в гладких мышцах стенок кровеносных сосудов. цАМФ служит вторичным посредником для многих гормонов - адреналина, эритропоэтина и др. (глава 3).

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) - вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая - пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков . Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.


Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO 2 , O 2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример - натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз - это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) - синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Клеточная мембрана имеет достаточно сложное строение , которое можно рассмотреть в электронный микроскоп. Грубо говоря, она состоит из двойного слоя липидов (жиров), в который в разных местах включены различные пептиды (белки). Общая толщина мембраны составляет около 5-10 нм.

Общий план строения клеточной мембраны универсален для всего живого мира. Однако мембраны животных содержат включения холестерина, который определяет ее жесткость. Отличие мембран разных царств организмов в основном касается надмембранных образований (слоев). Так у растений и грибов над мембраной (с внешней стороны) находится клеточная стенка. У растений она состоит преимущественно из целлюлозы, а у грибов - из вещества хитина. У животных надмембранный слой называется гликокаликсом.

По-другому клеточная мембрана называется цитоплазматической мембраной или плазматической мембраной.

Более глубокое изучение строения клеточной мембраны открывает многие ее особенности, связанные с выполняемыми функциями .

Двойной слой липидов в основном состоит из фосфолипидов. Это жиры, один конец которых содержит остаток фосфорной кислоты, обладающий гидрофильными свойствами (т. е. притягивает молекулы воды). Второй конец фосфолипида - это цепи жирных кислот, обладающие гидрофобными свойствами (не образуют с водой водородных связей).

Молекулы фосфолипидов в клеточной мембране выстраиваются в два ряда так, что их гидрофобные «концы» находятся внутри, а гидрофильные «головки» – снаружи. Получается достаточно прочная структура, ограждающая содержимое клетки от внешней среды.

Белковые включения в клеточной мембране распределены неравномерно, кроме того они подвижны (так как фосфолипиды в бислое обладают боковой подвижностью). С 70-х годов XX века стали говорить о жидкостно-мозаичном строении клеточной мембраны .

В зависимости от того, как белок входит в состав мембраны, выделяют три типа белков: интегральные, полуинтегральные и периферические. Интегральные белки проходят через всю толщу мембраны, и их концы торчат по обеим ее сторонам. В основном выполняют транспортную функцию. У полуинтегральных белков один конец находится в толще мембраны, а второй выходит наружу (с внешней или внутренней) стороны. Выполняют ферментативную и рецепторную функции. Периферические белки находятся на внешней или внутренней поверхности мембраны.

Особенности строения клеточной мембраны говорят о том, что она является основным компонентом поверхностного комплекса клетки, но не единственным. Другими его компонентами являются надмембранный слой и субмембранный слой.

Гликокаликс (надмембранный слой животных) образуют олигосахариды и полисахариды, а также периферические белки и выступающие части интегральных белков. Компоненты гликокаликса выполняют рецепторную функцию.

Кроме гликокаликса у клеток животных бывают и другие надмембранные образования: слизи, хитин, перилемма (подобна мембране).

Надмембранным образованием у растений и грибов является клеточная стенка.

Субмембранный слой клетки - это поверхностная цитоплазма (гиалоплазма) с входящей в нее опорно-сократительной системой клетки, фибриллы которой взаимодействуют с белками, входящими в клеточную мембрану. По таким соединениям молекул передаются различные сигналы.

    Отграничительная (барьерная )- отделяют клеточное содержимое от внешней среды;

    Регулируют обмен между клеткой и средой;

    Делят клетки на отсеки, или компартменты, предназначенные для тех или иных специализированных метаболических путей (разделительная );

    Является местом протекания некоторых химических реакций (световые реакции фотосинтеза в хлоропластах, окислительное фосфорилирование при дыхании в митохондриях);

    Обеспечивают связь между клетками в тканях многоклеточных организмов;

    Транспортная - осуществляет трансмембранный транспорт.

    Рецепторная - являются местом локализации рецепторных участков, распознающих внешние стимулы.

Транспорт веществ через мембрану – одна из ведущих функций мембраны, обеспечивающая обмен веществ между клеткой и внешней средой. В зависимости от затрат энергии для переноса веществ различают:

    пассивный транспорт, или облегченная диффузия;

    активный (избирательный) транспорт при участии АТФ и ферментов.

    транспорт в мембранной упаковке. Выделяют эндоцитоз (в клетку) и экзоцитоз (из клетки) – механизмы, которые осуществляют транспорт через мембрану крупных частиц и макромолекул. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и в цитоплазму отшнуровывается везикула. От цитоплазмы везикула отграничена одиночной мембраной, которая является частью наружной цитоплазматической мембраны. Различают фагоцитоз и пиноцитоз. Фагоцитоз – поглощение крупных частиц, достаточно твердых. Например, фагоцитоз лимфоцитов, простейших и др. Пиноцитоз – процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.

Экзоцитоз – процесс выведения различных веществ из клетки. При экзоцитозе мембрана везикулы, или вакуоли сливается с наружной цитоплазматической мембраной. Содержимое везикулы выводится за поверхность клетки, а мембрана включается в состав наружной цитоплазматической мембраны.

В основе пассивного транспорта незаряженных молекул лежит разность концентраций водорода и зарядов, т.е. электрохимический градиент. Вещества будут перемещаться из области с более высоким градиентом в область с более низким. Скорость транспорта зависит от разницы градиентов.

    Простая диффузия – транспорт веществ непосредственно через липидный бислой. Характерна для газов, неполярных или малых незаряженных полярных молекул, растворимых в жирах. Вода быстро проникает через бислой, т.к. ее молекула мала и электрически нейтральна. Диффузию воды через мембраны называют осмосом.

    Диффузия через мембранные каналы – транспорт заряженных молекул и ионов (Na, K, Ca, Cl), проникающих через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих водяные поры.

    Облегченная диффузия – транспорт веществ с помощью специальных транспортных белков. Каждый белок отвечает за строго определенную молекулу или группу родственных молекул, взаимодействует с ней и перемещает сквозь мембрану. Например, сахара, аминокислоты, нуклеотиды и другие полярные молекулы.

Активный транспорт осуществляется белками – переносчиками (АТФ-аза) против электрохимического градиента, с затратой энергии. Источником ее служат молекулы АТФ. Например, натрий – калиевый насос.

Концентрация калия внутри клетки значительно выше, чем вне ее, а натрия – наоборот. Поэтому катионы калия и натрия через водяные поры мембраны пассивно диффундируют по градиенту концентрации. Это объясняется тем, что проницаемость мембраны для ионов калия выше, чем для ионов натрия. Соответственно калий быстрее диффундирует из клетки, чем натрий – в клетку. Однако, для нормальной жизнедеятельности клетки необходимо определенное соотношение ионов 3 калия и 2 натрия. Поэтому в мембране существует натрий-калиевый насос, активно перекачивающий натрий из клетки, а калий в клетку. Этот насос представляет собой трансмембранный белок мембраны, способный к конформационным перестройкам. Поэтому он может присоединять к себе как ионы калия, так и ионы натрия (антипорт). Процесс энергоемкий:

    С внутренней стороны мембраны к белку-насосу поступают ионы натрия и молекула АТФ, а с наружной – ионы калия.

    Ионы натрия соединяются с молекулой белка, и белок приобретает АТФ-азную активность, т.е. способность вызывать гидролиз АТФ, который сопровождается выделением энергии, приводящей в движение насос.

    Освободившийся при гидролизе АТФ фосфат присоединяется к белку, т.е. фосфорилирует белок.

    Фосфорилирование вызывает конформационные изменения белка, он оказывается неспособным удержать ионы натрия. Они высвобождаются и выходят за пределы клетки.

    Новая конформация белка способствует присоединению к нему ионов калия.

    Присоединение ионов калия вызывает дефосфорилирование белка. Он опять меняет свою конформацию.

    Изменение конформации белка приводит к высвобождению ионов калия внутри клетки.

    Белок вновь готов присоединять к себе ионы натрия.

За один цикл работы насос выкачивает из клетки 3 иона натрия и закачивает 2 иона калия.

Цитоплазма – обязательный компонент клетки, заключенный между поверхностным аппаратом клетки и ядром. Это сложный гетерогенный структурный комплекс, состоящий из:

    гиалоплазмы

    органелл (постоянных компонентов цитоплазмы)

    включений – временных компонентов цитоплазмы.

Цитоплазматический матрикс (гиалоплазма) это внутреннее содержимое клетки – бесцветный, густой и прозрачный коллоидный раствор. Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке, содержат ферменты, необходимые для образования энергии, в основном за счет анаэробного гликолиза.

Основные свойства цитоплазматического матрикса.

    Определяет коллоидные свойства клетки. Вместе с внутриклеточными мембранами вакуолярной системы его можно рассматривать как высоко гетерогенную или многофазную коллоидную систему.

    Обеспечивает изменение вязкости цитоплазмы, переход из геля (более густого) в золь (более жидкий), которое возникает под действием внешних и внутренних факторов.

    Обеспечивает циклоз, амебовидное движение, деление клетки и движение пигмента в хроматофорах.

    Определяет полярность расположения внутриклеточных компонентов.

    Обеспечивает механические свойства клеток – эластичность, способность к слиянию, ригидность.

Органеллы – постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. В зависимости от особенностей строения различают:

    мембранные органоиды – имеют мембранное строение. Могут быть одномембранными (ЭПС, аппарат Гольджи, лизосомы, вакуоли растительных клеток). Двумембранными (митохондрии, пластиды, ядро).

    Немембранные органеллы – не имеют мембранного строения (хромосомы, рибосомы, клеточный центр, цитоскелет).

Органоиды общего назначения – свойственны всем клеткам: ядро, митохондрии, клеточный центр, аппарат Гольджи, рибосомы, ЭПС, лизосомы. Если органоиды характерны для определенных типов клеток, их называют специальными органоидами (например, миофибриллы, сокращающие мышечное волокно).

Эндоплазматическая сеть – единая непрерывная структура, мембрана которой образует множество впячиваний и складок, которые выглядят как канальцы, микровакуоли и крупные цистерны. Мембраны ЭПС, с одной стороны связаны с клеточной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.

Существует две разновидности ЭПС – шероховатая и гладкая.

У шероховатой, или гранулярной ЭПС, цистерны и канальцы связаны с рибосомами. является наружной стороной мембраны.У гладкой, или агранулярной ЭПС связь с рибосомами отсутствует. Это внутренняя сторона мембраны.

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клеки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell . - 5th ed. - New York: Garland Science, 2007. - ISBN 0-8153-3218-1 - учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт. . - 3-е издание, исправленное и дополненное. - Москва: издательство Московского университета, 2004. - ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - Москва: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. - Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. - Москва: Наука, 1994.

См. также

  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Wikimedia Foundation . 2010 .