Узлы в сердце названия. Для чего нужна проводящая система сердца



Проводящая система сердца состоит из синусно-предсердного узла, предсердно-желудочкового узла, предсердно-желудочкового пучка, его ножек и разветвлений проводящих волокон. Проводящая система передает ритмичные нервные импульсы, которые генерируются специализированными клетками синусно-предсердного узла (основной водитель ритма сердца). Синусно-предсердный узел располагается под эпикардом правого предсердия, между местом впадения верхней полой вены и ушком правого предсердия. От него импульсы распространяются по кардиомиоцитам предсердий и на предсердно-желудочковый узел, лежащий в толще нижнего отдела межпредсердной перегородки. От предсердно-желудочкового узла отходит короткий предсердно-желудочковый пучок, который в верхней части межжелудочковой перегородки разделятся на две ножки: правую и левую. Ножки пучка разветвляются под эндокардом в толще миокарда желудочка на тонкие пучки проводящих мышечных волокон, заканчивающихся непосредственно на кардиомиоцитах желудочков.

Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60-80 в минуту.

В обычных условиях автоматия всех нижерасположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким - примерно 20 в минуту.

Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Возникнув в синусно-предсердном узле, возбуждение распространяется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до предсердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5-5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т.е. синхронно. Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего миокарда, т.е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:

1) ритмическую генерацию импульсов (потенциалов действия);

2) необходимую последовательность (координацию) сокращений предсердий и желудочков;

3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).



Сокращения сердечной мышцы вызываются электрическими импульсами, которые зарождаются и проводятся в специализированную и видоизмененную ткань сердца, названную проводниковой системой. В нормальном сердце импульсы возбуждения возникают в синусовом узле, проходят через предсердия и достигают атриовентрикулярного узла. Затем они проводятся в желудочки через пучок Гиса, его правую и левую ножку и сеть волокон Пуркинье, и достигают сократительных клеток миокарда желудочков.

ПРОВОДНИКОВАЯ СИСТЕМА

1. Синусовый узел (синоатриальный, S-A-узел Keith и Flack)

2. Передний межузловой путь с двумя разветвлениями:

2а - пучок к левому предсердию (пучок Bachmann)

2б - нисходящий пучок к межпредсердной перегородке и атриовентрикулярному узлу

3. Средний межузловой путь

4. Задний межузловой путь

5. Атриовентрикулярный (А-V) узел Ашоффа-Тавара

6. Пучок Гиса

7. Правая ножка пучка Гиса

8. Левая ножка пучка Гиса

9. Задняя ветвь левой ножки

10. Передняя ветвь левой ножки

11. Сеть волокон Пуркинье в желудочковой мускулатуре

12. Сеть волокон Пуркинье в предсердной мускулатуре

СИНУСОВЫЙ УЗЕЛ

Синусовый узел представляет собой пучок специфической сердечно-мышечной ткани, длина которого достигает 10-20 мм и ширина - 3-5 мм. Он расположен субэпикардиально в стенке правого предсердия, непосредственно сбоку от устья верхней полой вены. Клетки синусового узла расположены в нежной сети, состоящей из коллагеновой и эластической соединительной ткани. Существует два вида клеток синусового узла - водителя гритма или пейсмекерные (Р-клетки) и проводниковые (Т-клетки). Р-клетки генерируют электрические импульсы возбуждения, а Т-клетки выполняют преимущественно функцию проводников. Клетки Р связываются как между собой, так и с клетками Т. Последние, в свою очередь, анастомозируют друг с другом и связываются с клетками Пуркинье, расположенными около синусового узла.

В самом синусовом узле и рядом с ним находится множество нервных волокон симпатического и блуждающего нервов, а в субэпикардиальной жировой клетчатке над синусовым узлом расположены ганглии блуждающего нерва. Волокна к ним исходят в основном из правого блуждающего нерва.
Питание синусового узла осуществляется синоатриальной артерией. Это сравнительно крупный сосуд, который проходит через центр синусового узла и от него отходят мелкие ветви к ткани узла. В 60% случаев синоатриальная артерия отходит от правой венечной артерии, а в 40% - от левой.

Синусовый узел является нормальным электрическим водителем сердечного ритма. Через равные промежутки времени в нем возникают электрические потенциалы, возбуждающие миокард и вызывающие сокращение всего сердца. Клетки Р синусового узла генерируют электрические импульсы, которые проводятся клетками Т в близкорасположенные клетки Пуркинье. Последние, в свою очередь, активируют рабочий миокард правого предсердия. Кроме того, по специфическим путям электрический импульс проводится в левое предсердие и атриовентрикулярный узел.

МЕЖУЗЛОВЫЕ ПУТИ

Электрофизиологическими и анатомическими исследованиями в последнее десятилетие было доказано наличие трех специализированных проводниковых путей в предсердиях, связывающих синусовый с атриовентрикулярным узлом: передний, средний и задний межузловые пути (James, Takayasu, Merideth и Titus). Эти пути образованы клетками Пуркинье и клетками, очень похожими на клетки сократительного предсердного миокарда, нервными клетками и ганглиями блуждающего нерва (James).

Передний межузловой путь делится на две ветви - первая из них идет к левому предсердию и называется пучком Бахманна, а вторая спускается вниз и кпереди по межпредсердной перегородке и достигает верхней части атриовентрикулярного узла.

Средний межузловой путь , известный под названием пучок Венкебаха, начинается от синусового узла, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и, анастомозируя с волокнами переднего межузлового пути, достигает атриовентрикулярного узла.

Задний межузловой путь , названный пучком Тореля, отходит от синусового узла, идет вниз и кзади, проходит непосредственно над коронарным синусом и достигает задней части атриовентрикулярного узла. Пучок Тореля самый длинный из всех трех межузловых путей.

Все три межузловые пути анастомозируют между собой недалеко от верхней части атриовентрикулярного узла и связываются с ним. В некоторых случаях от анастомоза межузловых путей отходят волокна, которые обходят атриовентрикулярный узел и сразу достигают его нижней части, или же доходят до того места, где он переходит в начальную часть пучка Гиса.

АТРИОВЕНТРИКУЛЯРНЫЙ УЗЕЛ

Атриовентрикулярный узел находится справа от межпредсердной перегородки над местом прикрепления створки трехстворчатого клапана, непосредственно рядом с устьем коронарного синуса. Форма и размеры его разные: в среднем длина его достигает 5-6 мм, а ширина - 2-3 мм.

Подобно синусовому узлу, атриовентрикулярный узел содержит также два вида клеток - Р и Т. Однако имеются значительные анатомические различия между синоаурикулярным и атриовентрикулярным узлами. В атриовентрикулярном узле гораздо меньше Р-клеток и незначительное количество сети коллагеновой соединительной ткани. У него нет постоянной, центрально проходящей артерии. В жировой клетчатке за атриовентрикулярным узлом, вблизи устья коронарного синуса, находится большое число волокон и ганглиев блуждающего нерва. Кровоснабжение атриовентрикулярного узла происходит посредством ramus septi fibrosi, называемой еще артерией атриовентрикулярного узла. В 90% случаев она отходит от правой венечной артерии, а в 10% - от ramus circumflexus левой венечной артерии.

Клетки атриовентрикулярного узла связываются анастомозами и образуют сетчатую структуру. В нижней части узла, перед переходом в пучок Гиса, клетки его располагаются параллельно друг другу.

ПУЧОК ГИСА

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом. Эта часть известна под названием начальной проксимальной или пенетрирующей части пучка Гиса. Затем пучок Гиса переходит в задне-нижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Это так называемая мембранозная часть пучка Гиса. Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см. Питание пучка Гиса осуществляется артерией атриовентрикулярного узла.

Иногда от дистальной части пучка Гиса и начальной части левой ножки его отходят короткие волокна, идущие в мышечную часть межжелудочковой перегородки. Эти волокна называются параспецифическими фибрами Махайма.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

ПРАВАЯ И ЛЕВАЯ НОЖКИ ПУЧКА ГИСА

Пучок Гиса в нижней части, названной бифуркацией, разделяется на две ножки - правую и левую, которые идут субэндокардиально или интракардиально по соответствующей стороне межжелудочковой перегородки. Правая ножка представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные проксимальные разветвления или без таковых. В дистальной части правая ножка пучка Гиса выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается анастомозами с волокнами сети Пуркинье.

Несмотря на усиленные морфологические изучения, проводимые в последние годы, структура левой ножки пучка Гиса остается невыясненной. Существуют две основные схемы строения левой ножки пучка Гиса. Согласно первой схеме (Rosenbaum и сотр.), левая ножка еще с самого начала делится на две ветви - переднюю и заднюю. Передняя ветвь - относительно более длинная и тонкая - достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка. Задняя ветвь - относительно короткая и толстая - достигает основания задней сосочковой мышцы левого желудочка. Таким образом внутрижелудочковая проводниковая система представлена тремя проводящими путями, названными Rosenbaum и сотр. фасцикулами, - правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса. Множество электрофизиологических исследований поддерживают мнение о трехпучковой (трифасцикулярной) внутрижелудочковой проводниковой системе.

По второй схеме (James и сотр.) считается, что в отличие от правой ножки, левая не представляет собой обособленного пучка. Левая ножка еще в самом начале, отходя от пучка Гиса, разделяется на множество варьирующих по числу и толщине волокон, которые веерообразно разветвляются субэндокардиально по левой стороне межжелудочковой перегородки. Два из множества разветвлений образуют более обособленные пучки - один, расположенный спереди, - в направлении передней, а другой сзади - в направлении задней сосочковой мышцы.

Как левая, так и правая ножка пучка Гиса, подобно межузловым путям предсердий, составлены из двух видов клеток - клеток Пуркинье и клеток, очень похожих на клетки сократительного миокарда.
Большая часть правой и передние две трети левой ножки кровоснабжаются септальными веточками левой передней нисходящей артерии. Задняя треть левой ножки питается септальными веточками задней нисходящей артерии. Существует множество транссептальных анастомозов между септальными веточками передней нисходящей венечной артерии и веточками задней нисходящей венечной артерии (James).
Волокна блуждающего нерва доходят до обеих ножек пучка Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

ВОЛОКНА СЕТИ ПУРКИНЬЕ

Конечные разветвления правой и левой ножек пучка Гиса связываются анастомозами с обширной сетью клеток Пуркинье, расположенных субэндокардиально в обоих желудочках. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков. Электрический импульс, поступающий по внутрижелудочковым проводящим путям, достигает клеток сети Пуркинье и отсюда переходит непосредственно к сократительным клеткам желудочков, вызывая сокращение миокарда.

Нервные волокна блуждающего нерва не доходят до сети волокон Пуркинье в желудочках.
Клетки сети волокон Пуркинье питаются кровью из капиллярной сети артерий соответствующего района миокарда.

Проводящая система сердца (ПСС) - комплекс анатомических образований сердца (узлов, пучков и волокон), состоящих из атипичных мышечных волокон (сердечные проводящие мышечные волокна) и обеспечивающих координированную работу разных отделов сердца (предсердий и желудочков), направленную на обеспечение нормальной сердечной деятельности.

Энциклопедичный YouTube

    1 / 5

    Проводящая система сердца

    Сердце: топография, строение, кровоснабжение, иннервация, проводящая система

    Строение сердца, оболочек сердца, фиброзный скелет сердца, проводящая система

    Тоны сердца

    Сердечный цикл

    Субтитры

    Вот схема четырёх камер сердца. Для начала назовём их. Вот это - правое предсердие. Внизу - правый желудочек. Есть еще левое предсердие и левый желудочек. Четыре камеры сердца. Через них проходит кровь и затем поступает в тело. Чтобы выполнить свои функции, сердце должно сжиматься координировано. А мы знаем, что сжимается оно так: клетка, обычно негативно заряженная, в какой-то момент стремится к положительному заряду. И этот процесс называется «деполяризация». Деполяризация - это когда мембранный потенциал растёт от негативного значения к большему положительному. Когда мышечная клетка деполяризуется, она может сжаться. Когда же это начинается? Давайте отобразим это на схеме. Здесь есть маленькая область, в которой клетки могут сами деполяризоваться. Это уникально, поскольку большинство клеток в теле поляризуются, когда соседние клетки деполяризуются. То есть, это уникальные клетки, поскольку они могут деполяризоваться сами. Эта область называется «синусно-предсердный узел» или СП-узел. И у умения клеток самостоятельно деполяризоваться тоже есть название. Оно называется «автоматизм». Запишу его. Это значит, что они деполяризуются автоматически, им не нужна помощь других клеток. Что же случается после их деполяризации? Клетки связаны щелевидными соединениями с соседними мышечными клетками. И когда они деполяризуются, то начинают посылать волны деполяризации во всех направлениях. Это почти как «волна» на футбольном матче. Она длится и длится. И все соседние клетки тоже деполяризуются. Эта оранжевая стрелочка двигается довольно медленно. Волна деполяризации двигается медленно, по сравнению с тем, как она двигалась бы, если бы проходила через специальный пучок. Я его рисую, эта синяя линия по сравнению с оранжевой стрелочкой, как шоссе по сравнению с маленькой дорогой. И это шоссе перебросит волну деполяризации на другую сторону, в левое предсердие. Где клетки начнут делать то же самое. Они деполяризуются. Итак, деполяризация происходит в правом и левом предсердии скоординировано. Всё происходит довольно равномерно. А вот эта линия или пучок, называется «пучок Бахмана». Она проводит сигнал и называется «пучок Бахмана». Теперь мы знаем, что такое синусно-предсердный узел и пучок Бахмана. Помимо пучка Бахмана, существуют другие ткани, через которые сигнал передаётся в другой узел, который называется предсердно-желудочковым. Это - предсердно-желудочковый узел. И этот узел - единственное, что связывает между собой предсердие и желудочки. Его иногда ещё называют ПЖ-узел. Итак, этот узел получает сигнал. Хотя, я ещё не сказал вам, через что прошёл этот сигнал. Он прошёл через межузловые пути. Это собирательное название для всех трёх пучков. Итак, сигнал прошёл от синусно-предсердного узла через межузловые пути к предсердно-желудочковому узлу. И вот тут происходит интересная вещь. Давайте вернемся назад и посмотрим на предсердно-желудочковый узел, и разберёмся, что именно тут происходит. А чтобы это выяснить, я дам вам небольшой сценарий. Скажем, у вас есть промежуток времени. Например, три секунды. Вам нужно смотреть, как сокращаются предсердия. Вы смотрите только на предсердия. И вы скажете: я видел, как оно сократилось вот тут, потом вот здесь и ещё здесь. Предсердия, получая волну деполяризации, сокращаются за три секунды трижды. Предсердия сокращаются трижды. Теперь то же самое происходит с желудочками. Наблюдаем за ними, следим, чтобы увидеть, что произойдёт. И вы увидите, что желудочки сокращаются вот здесь, здесь и ещё здесь. Итак, и предсердия, и желудочки сокращаются одинаковое количество раз. Но интересно, что между их сокращениями есть задержка. Они сокращаются не одновременно. Есть маленькая задержка. Если её замерить, то получится десятая доля секунды, совсем маленький промежуток. Но возникает она из-за предсердно-желудочкового узла. Что интересно в предсердно-желудочковом узле, так это задержка между предсердиями и желудочками. Запишем это. Причина очень важна, она состоит в том, что если бы предсердия и желудочки сокращались одновременно, они бы выталкивали кровь друг в друга. То есть, это не позволяло бы крови двигаться в нужном направлении. Благодаря задержке, кровь из сжимающихся предсердий переносится в желудочки. А затем, десятую долю секунды спустя, желудочки сокращаются и выталкивают кровь дальше. То есть, задержка происходит для того, чтобы кровь двигалась по сердцу скоординировано. Итак, сигнал получен с задержкой на десятую долю секунды. Но потом он идёт дальше. И попадает вот в эту маленькую область, вот здесь. Она называется «пучок Гиса». Сейчас подпишу. Забавное название - пучок Гиса. Посмотрим, куда теперь пойдет наш сигнал. Из пучка Гиса он идёт вот по этому пути вниз. Это правая ножка пучка Гиса. И затем он идёт через левую ножку. Левая ножка делится. Первая часть продолжает идти вперёд, а вторая идёт назад. Заднюю ветвь я рисую пунктиром, вот так. Это «левая задняя ветвь». А это левая передняя ветвь, поскольку она идёт вперёд. Придётся вообразить, что они идут вперёд и назад, поскольку в двух измерениях это довольно сложно изобразить. А это называется просто «правая ножка». И чтобы вы не ошиблись, знайте, что вот эта часть, где всё ещё не разделилось на две ветви, называется «левая ножка». Есть правая и левая ножки. А затем левая ножка снова разделяется. Её волокна на конце сильно разветвляются. Это «волокна Пуркинье». Волокна Пуркинье есть с обеих сторон. С этого момента, фактически, сигнал может идти в любом направлении. И можно наконец-то включить в процесс мышечные клетки. До сих пор сигнал двигался по проводящей системе сердца, по этим «шоссе». Но теперь волны деполяризации идут по узким дорогам. Я использую образы шоссе и дорог, просто чтобы подчеркнуть, что через проводящую систему сигнал проходит очень быстро. А когда он доходит до самой мышцы, то двигается немного медленнее. Как видите, это очень важно, поскольку нужно запустить все мышечные клетки скоординировано. Итак, вот как сигнал двигается: от синусно-предсердного узла, через проводящую систему сердца, чтобы предсердия сократились одновременно, затем в предсердно-желудочковый узел с маленькой задержкой, и затем в желудочки, которые, опять-таки, должны сократиться одновременно. Subtitles by the Amara.org community

Анатомия

ПСС состоит из двух взаимосвязанных частей: синоатриальной (синусно-предсердной) и атриовентрикулярной (предсердно-желудочковой).

К синоатриальной относят синоатриальный узел (узел Киса-Фляка ), три пучка межузлового быстрого проведения, связывающие синоатриальный узел с атриовентрикулярным и межпредсердный пучок быстрого проведения, связывающий синоатриальный узел с левым предсердием.

Атриовентрикулярная часть состоит из атриовентрикулярного узла (узел Ашоффа–Тавара ), пучка Гиса (включает в себя общий ствол и три ветви: левая передняя, левая задняя и правая) и проводящих волокон Пуркинье .

Кровоснабжение

Иннервация

ПСС морфологически отличается как от мышечной, так и от нервной ткани, но находится в тесной связи и с миокардом, и с внутрисердечной нервной системой.

Эмбриология

Гистология

Атипичные мышечные волокна сердца - это специализированные проводящие кардиомиоциты, богато иннервированные, с небольшим количеством миофибрилл и обилием саркоплазмы.

Синусовый узел

Синусовый узел или синоатриальный узел (САУ) Кисса-Флека (лат. nódius sinuatriális ) расположен субэндокардиально в стенке правого предсердия латеральнее устья верхней полой вены, между отверстием верхней полой вены и и правым ушком предсердия; отдаёт ветви к миокарду предсердий.

Длина САУ ≈ 15 мм , ширина его ≈ 5 мм и толщина ≈ 2 мм . У 65% людей артерия узла берёт своё начало из правой венечной артерии, у остальных - из огибающей ветви левой венечной артерии. САУ богато иннервирован симпатическими и правым парасимпатическим нервами сердца, которые вызывают, соответственно, отрицательный и положительный хронотропные эффекты. .

Клетки, составляющие синусовый узел, гистологически отличаются от клеток рабочего миокарда. Хорошим ориентиром служит выраженная a.nodalis (узловая артерия). Клетки синусового узла по размерам меньше клеток рабочего миокарда предсердия. Они группируются в виде пучков, при этом вся сеть клеток погружена в развитый матрикс. На границе синусового узла, обращенной к миокарду устья верхней полой вены, определяется переходная зона, которая может расцениваться как присутствие клеток рабочего миокарда предсердий в пределах синусового узла. Такие участки вклинения клеток предсердия в ткань узла чаще всего встречаются на границе узла и пограничного гребня (выступа стенки правого предсердия сердца, которым заканчиваются вверху гребенчатые мышцы).

Гистологически синусовый узел состоит из т.н. типичных клеток узла. Они располагаются беспорядочно, имеют веретенообразную форму, а иногда разветвления. Для этих клеток характерно слабое развитие сократительного аппарата, случайное распределение митохондрий. Саркоплазматический ретикулум развит хуже, чем в миокарде предсердий, а система T-трубочек отсутствует. Это отсутствие, правда, не является критерием, по которому выделяются "специализированные клетки": часто система T-трубочек отсутствует и в рабочих кардиомиоцитах предсердия.

По краям синусового узла наблюдаются переходные клетки, отличающиеся от типичных лучшей ориентацией миофибрилл наряду с более высоким процентом межклеточных соединений - нексусов. Находимые ранее "вставочные светлые клетки", по последним данным, являются не более чем артефактом.

Согласно концепции, предложенной T.James и соавт. (1963-1985), связь синусового узла с АВ-узлом обеспечивается за счет наличия 3-х трактов: 1) короткий передний (пучок Бахмана), 2) средний (пучок Венкебаха) и 3) задний (пучок Тореля), более длинный. Обычно импульсы попадают в АВУ по короткому переднему и среднему трактам, на что расходуется 35-45 мсек. Скорость распространения возбуждения по предсердиям составляет 0,8-1,0 м/с. Описаны и другие проводящие тракты предсердий; к примеру, по данным B.Scherlag (1972), по нижнему межпредсердному тракту возбуждение проводится из передней части правого предсердия в нижнезаднюю часть левого предсердия. Считается, что в физиологических условиях эти пучки, а также пучок Тореля находятся в латентном состоянии.

Тем не менее, многими исследователями оспаривается существование каких-либо специализированных пучков между САУ и АВУ. Так, к примеру, в хорошо известной коллективной монографии сообщается следующее:

Полемика по вопросу об анатомическом субстрате для проведения импульсов между синусовым и атриовентрикулярным узлами ведётся уже сто лет, сколько насчитывает и сама история изучения проводящей системы. (...) По мнению Aschoff, Monckeberg и Koch, ткань между узлами является рабочим миокардом предсердий и не содержит гистологически различимых трактов. (...) На наш взгляд, в качестве трёх указанных выше специализированных путей James дал описание практически всего миокарда предсердной перегородки и пограничного гребня. (...) Насколько нам известно, никто до сих пор на основе морфологических наблюдений не доказал, что в межсердечной перегородке и пограничном гребне проходят узкие тракты, каким-либо образом сравнимые с атриовентрикулярным трактом и его ответвлениями.

Область атриовентрикулярного соединения

Предсердно-желудочковый узел (лат. nódus atrioventriculáris ) лежит в толще передне-нижнего отдела основания правого предсердия и в межпредсердной перегородке. Длина его составляет 5-6 мм, ширина 2-3 мм. Кровоснабжается он одноименной артерией, которая в 80-90% случаев является ветвью правой коронарной артерии, а в остальных - ветвью левой огибающей артерии.

АВУ представляет собой ось проводящей ткани. Располагается на гребне входного и верхушечного трабекулярного компонентов мышечной части межжелудочковой перегородки. Архитектонику АВ-соединения удобнее рассматривать по восходящей - от желудочка к миокарду предсердий. Ветвящийся сегмент АВ-пучка расположен на гребне апикального трабекулярного компонента мышечной части межжелудочковой перегородки. Предсердный отрезок АВ-оси может быть разделен на компактную зону АВ-узла и переходную клеточную зону. Компактный участок узла по всей своей длине сохраняет тесную связь с фиброзным телом, которое образует его ложе. Он имеет два удлинения, проходящие вдоль фиброзного основания направо к трёхстворчатому клапану и налево - к митральному.

Переходная клеточная зона - это область, диффузно расположенная между сократительным миокардом и специализированными клетками компактной зоны АВ-узла. В большинстве случаев переходная зона более выражена сзади, между двумя удлинениями АВ-узла, но она также образует полуовальное покрытие тела узла.

С точки зрения гистологии, клетки предсердного компонента АВ-соединения мельче, чем клетки рабочего миокарда предсердий. Клетки переходной зоны имеют вытянутую форму и иногда разделены тяжами фиброзной ткани. В компактной зоне АВ-узла клетки расположены более тесно и часто организованы во взаимосвязанные пучки и завитки. Во многих случаях выявляется разделение компактной зоны на глубокий и поверхностный слои. Дополнительным покрытием служит слой переходных клеток, придающий узлу трехслойность. По мере перехода узла в проникающую часть пучка наблюдается увеличение размеров клеток, но в основном клеточная архитектоника сравнима с таковой в компактной зоне узла. Границу между АВ-узлом и проникающей частью одноименного пучка трудно определить под микроскопом, поэтому предпочтительней чисто анатомическое разделение в районе точки входа оси в фиброзное тело. Клетки, составляющие ветвящуюся часть пучка, по своим размерам напоминают клетки миокарда желудочков.

Коллагеновые волокна делят АВУ на кабельные структуры. Эти структуры создают анатомическую основу для продольной диссоциации проведения. Проведение возбуждения по АВУ возможно как в антероградном, так и в ретроградном направлениях. АВУ, как правило, оказывается функционально разделённым продольно на два проводящих канала (медленный α и быстрый β) - это создаёт условия для возникновения пароксизмальной узловой реципроктной тахикардии .

Продолжением АВУ является общий ствол пучка Гиса .

Пучок Гиса

Предсердно-желудочковый пучок (лат. fascículus atrioventriculális ), или пучок Гиса, связывает миокард предсердий с миокардом желудочков. В мышечной части межжелудочковой перегородки этот пучок делится на правую и левую ножки (лат. crus déxtrum et crus sinístrum ). Концевые разветвления волокон (волокна Пуркинье), на которые распадаются эти ножки, заканчиваются в миокарде желудочков.

Длина общего ствола пучка Гиса 8-18 мм в зависимости от размеров перепончатой части межжелудочковой перегородки, ширина около 2 мм. Ствол пучка Гиса состоит из двух сегментов - прободающего и ветвящегося. Прободающий сегмент проходит через фиброзный треугольник и доходит до мембранной части межжелудочковой перегородки. Ветвящийся сегмент начинается на уровне нижнего края фиброзной перегородки и делится на две ножки: правая направляется к правому желудочку, а левая - к левому, где распределяется на переднюю и заднюю ветви. Передняя ветвь левой ножки пучка Гиса разветвляется в передних отделах межжелудочковой перегородки, в передне-боковой стенке левого желудочка и в передней сосочковой мышце. Задняя ветвь обеспечивает проведение импульса по средним отделам межжелудочковой перегородки, по задне-верхушечным и нижним частям левого желудочка, а также по задней сосочковой мышце. Между ветвями левой ножки пучка Гиса существует сеть анастомозов, по которым импульс при блокаде одной из них попадает в блокированный области за 10-20 мсек. Скорость распространения возбуждения в общем стволе пучка Гиса составляет около 1,5 м/с, в разветвлениях ножек пучка Гиса и проксимальных отделах системы Пуркинье она достигает 3-4 м/с, а в терминальных отделах волокон Пуркинье снижается и в рабочем миокарде желудочков равняется примерно 1 м/с.

Прободающая часть ствола Гиса кровоснабжается из артерии АВУ; правая ножка и передняя ветвь левой ножки - от передней межжелудочковой венечной артерии; задняя ветвь левой ножки - от задней межжелудочковой венечной артерии.

Волокна Пуркинье

Бледные или набухшие клетки (так называемые клетки Пуркинье) редко встречаются в специализированной области атриовентрикулярного соединения у младенцев и детей младшего возраста.

Функциональное значение

Координируя сокращения предсердий и желудочков, ПСС обеспечивает ритмичную работу сердца, т.е нормальную сердечную деятельность. В частности, именно ПСС обеспечивает автоматизм сердца .

Функционально синусовый узел является водителем ритма первого порядка. В состоянии покоя в норме он генерирует 60-90 импульсов в минуту.

В АВ-соединении, главным образом в пограничных участках между АВУ и пучком Гиса, происходит значительная задержка волны возбуждения. Скорость проведения сердечного возбуждения замедляется до 0,02-0,05 м/с. Такая задержка возбуждения в АВУ обеспечивает возбуждение желудочков только после окончания полноценного сокращения предсердий. Таким образом, основными функциями АВУ являются: 1) антероградная задержка и фильтрация волн возбуждения от предсердий к желудочкам, обеспечивающие скоординированное сокращение предсердий и желудочков и 2) физиологическая защита желудочков от возбуждения в уязвимой фазе потенциала действия (с целью профилактики рециркуляторных желудочковых тахикардий

  • Кровоснабжение сердца. Питание сердца. Венечные артерии сердца.
  • Положение сердца. Типы положения сердца. Величина сердца.
  • Важную роль в ритмичной работе сердца и в координации деятельности мускулатуры отдельных камер сердца играет так называемая проводящая система сердца. Хотя мускулатура предсердий отделена от мускулатуры желудочков фиброзными кольцами, однако между ними существует связь посредством проводящей системы, представляющей собой сложное нервно-мышечное образование. Мышечные волокна, входящие в ее состав (проводящие волокна), имеют особое строение: их клетки бедны миофиб-риллами и богаты саркоплазмой, поэтому светлее. Они видимы иногда невооруженным глазом в виде светло окрашенных ниточек и представляют менее дифференцированную часть первоначального синцития, хотя по величине превосходят обычные мышечные волокна сердца. В проводящей системе различают узлы и пучки.

    1. Синусно-предсердный узел, nodus sinuatrialis , расположен в участке стенки правого предсердия, соответствующем sinus venosus холоднокровных (в sulcus terminalis, между верхней полой веной и правым ушком). Он связан с мускулатурой предсердий и имеет значение для их ритмичного сокращения.

    2. Предсердно-желудочковый узел, nodus atrioventricularis , расположен в стенке правого предсердия, близ cuspis septalis трехстворчатого клапана. Волокна узла, непосредственно связанные с мускулатурой предсердия, продолжаются в перегородку между желудочками в виде предсердно-желудочкового пучка, fasciculus atrioventricularis (пучок Гиса) . В перегородке желудочков пучок делится на две ножки - crus dextrum et sinistrum , которые идут в стенки соименных желудочков и ветвятся под эндокардом в их мускулатуре. Предсердно-желудочковый пучок имеет весьма важное значение для работы сердца, так как по нему передается волна сокращения с предсердий на желудочки, благодаря чему устанавливается регуляция ритма систолы - предсердий и желудочков.

    Следовательно, предсердия связаны между собой синусно-предсердным узлом, а предсердия и желудочки - предсердно-желудочковым пучком. Обычно раздражение из правого предсердия передается с синусно-предсердного узла на предсердно-желудочковый, а с него по предсердно-желудочковому пучку на оба желудочка.

    Знание проводящей системы сердца необходимо для освоения ЭКГ и понимания сердечных аритмий .

    Сердце обладает автоматизмом - способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.

    Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца . Рассмотрим компоненты проводящей системы сердца:

    синусно-предсердный узел, предсердно-желудочковый узел, пучок Гиса с его левой и правой ножкой, волокна Пуркинье.

    Схема проводящей системы сердца .


    Теперь подробнее.

    1) синусно-предсердный узел (= синусовый, синоатриальный, SA ; от лат. atrium - предсердие) - источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу). Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово «синус» в переводе означает «пазуха», «полость».

    Фраза «ритм синусовый » в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте - синусно-предсердном узле. Нормальная частота ритма в покое - от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией , а выше 90 - тахикардия . У тренированных людей обычно наблюдается брадикардия.

    Интересно знать, что в норме импульсы генерируются не с идеальной точностью. Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на? 10% превышает среднее значение). При дыхательной аритмии ЧСС на вдохе увеличивается , а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС. Дыхательная синусовая аритмия бывает преимущественно у здоровых людей , особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

    2) предсердно-желудочковый узел (атриовентрикулярный, AV ; от лат. ventriculus - желудочек) является, можно сказать, «фильтром» для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков - 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки.

    Почему я назвал AV-узел «фильтром »? Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто. С помощью различных препаратов можно регулировать ЧСС , повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы). Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС > 6% больных старше 60 лет. Любопытно, что с фибрилляцией предсердий жить можно годами, а вот фибрилляция желудочков является смертельной аритмией (один из примеров описан ранее), при ней без экстренной медицинской помощи больной умирает за 6 минут.

    Проводящая система сердца .

    3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек крупнее, то левой ножке приходится разделиться на две ветви - переднюю и заднюю .

    Зачем это знать? Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, «полная блокада левой ножки пучка Гиса».

    4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

    Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту. Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел - водитель ритма 2-го порядка , генерирующий импульсы 40-60 раз в минуту. Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace - скорость, темп).

    Проведение импульса в проводящей системе сердца (анимация).

    В норме активен только водитель ритма первого порядка, остальные «спят» . Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный. Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту).

    Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки - в своем с частотой 20-40 в минуту.

    Про основы ЭКГ будет отдельная статья.

    Электрокардиограмма. Часть 1 из 3: теоретические основы ЭКГ Электрокардиограмма. Часть 2 из 3: план расшифровки ЭКГ ЭКГ, часть 3a. Мерцательная аритмия и наджелудочковая пароксизмальная тахикардия

    АВ-узел расположен в нижней части межпредсердной перегородки сразу над трикуспидальным кольцом и спереди от коронарного синуса, кровоснабжается в 90% случаев задней межжелудочковой ветвью правой коронарной артерии. Скорость проведения в АВ-узле низкая, что приводит к физиологической задержке проведения, на ЭКГ она соответствует сегменту PQ .

    На электрическую активность синусового узла и АВ-узла оказывает существенное влияние вегетативная нервная система. Парасимпатические нервы подавляют автоматизм синусового узла, замедляют проводимость и удлиняют рефрактерный период в синусовом узле и прилежащих к нему тканях и в АВ-узле. Симпатические нервы оказывают противоположное действие.

    Смотрите также:

    Синдром WPW Желудочковая экстрасистолия ЭКГ при патологии: блокада ножек пучка Гиса Мерцательная аритмия: общие сведения Потенциал действия кардиомицетов Электрическая активность сердца ЭКГ: зубцы, сегменты и интервалы Нарушения образования импульса сердца

    Прежде, чем знакомиться с дальнейшим материалом, рекомендуется вкратце освежить анатомические знания сердечной мышцы.

    Сердце - удивительный орган, обладающий клетками проводящей системы и сократительного миокарда, которые «заставляют» сердце ритмично сокращаться, выполняя функцию кровяного насоса.


    синусно-предсердный узел (синусовый узел); левое предсердие; предсердно-желудочковый узел (атриовентрикулярный узел); предсердно-желудочковый пучок (пучок Гиса); правая и левая ножки пучка Гиса; левый желудочек; проводящие мышечные волокна Пуркинье; межжелудочковая перегородка; правый желудочек; правый предсердно-желудочковый клапан; нижняя полая вена; правое предсердие; отверстие венечного синуса; верхняя полая вена.

    Рис.1 Схема строения проводящей системы сердца

    Из чего состоит проводящая система сердца?

    Начинается проводящая система сердца синусовым узлом (узел Киса-Флака), который расположен субэпикардиально в верхней части правого предсердия между устьями полых вен. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм. Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).
    Далее следует атриовентрикулярный узел (узел Ашоффа-Тавара), который расположен в нижней части правого предсердия справа от межпредсердной перегородки, рядом с устьем коронарного синуса. Его длина 5 мм, толщина 2 мм. По аналогии с синусовым узлом, атриовентрикулярный узел также состоит из P-клеток и T-клеток.
    Атриовентрикулярный узел переходит в пучок Гиса , который состоит из пенетрирующего (начального) и ветвящегося сегментов. Начальная часть пучка Гиса не имеет контактов с сократительным миокардом и мало чувствительна к поражению коронарных артерий, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм.
    Пучок Гиса разделяется на 2 ножки (правую и левую). Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим стороная межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся. Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь - заднюю стенку левого желудочка, и нижние отделы боковой стенки.
    правая ножка пучка Гиса; правый желудочек; задняя ветвь левой ножки пучка Гиса; межжелудочковая перегородка; левый желудочек; передняя ветвь левой ножки; левая ножка пучка Гиса; пучок Гиса.

    На рисунке представлен фронтальный разрез сердца (внутрижелудочковой части) с разветвлениями пучка Гиса. Внутрижелудочковую проводящую систему можно рассматривать как систему, состоящую из 5 основных частей: пучок Гиса, правая ножка, основная ветвь левой ножки, передняя ветвь левой ножки, задняя ветвь левой ножки.

    Наиболее тонкими, следовательно уязвимыми, являются правая ножка и передняя ветвь левой ножки пучка Гиса. Далее, по степени уязвимости: основной ствол левой ножки; пучок Гиса; задняя ветвь левой ножки.

    Ножки пучка Гиса и их ветви состоят из двух видов клеток - Пуркинье и клеток, по форме напоминающие клетки сократительного миокарда.

    Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье , которые связываются непосредственно с сократительным миокардом желудочков, пронизывая всю мышцу сердца.

    Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье - импульсы проводятся к сократительному миокарду.

    Рассмотрим этот процесс подробно:

    Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.
    Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.
    По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ): Передний путь (тракт Бахмана) - идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки - одна из которых подходит к АВУ, а другая - к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с; Средний путь (тракт Венкебаха) - идет по межпредсердной перегородке к АВУ; Задний путь (тракт Тореля) - идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.
    Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.
    Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.
    АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.
    Между АВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.
    Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.
    Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма - 15-30 импульсов в минуту.
    В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.
    В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

    Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма:

    синусовый узел (автоматический центр первого порядка) - обладает наибольшим автоматизмом; атриовентрикулярный узел (автоматический центр второго порядка); пучок Гиса и его ножки (автоматический центр третьего порядка).

    В норме существует только один водитель ритма - это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.

    Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.

    Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.

    Проводящая система сердца способна проводить импульсы не только в прямом направлении - от предсердий к желудочкам (антеградно), но и в обратном направлении - от желудочков к предсердиям (ретроградно).

    Пройти онлайн тест (экзамен) по данной теме…

    ВНИМАНИЕ! Информация, представленная сайте DIABET-GIPERTONIA.RU носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

    Структура сердца

    Сердце - мышечный орган, состоящий из четырех камер:

    правого предсердия, собирающего венозную кровь из организма; правого желудочка, нагнетающего венозную кровь в малый круг кровообращения - в легкие, где и происходит газообмен с атмосферным воздухом; левого предсердия, собирающего обогащенную кислородом кровь из легочных вен; левого желудочка, обеспечивающего продвижение крови ко всем органам организма.

    Кардиомиоциты

    Стенки предсердий и желудочков состоят из поперечно-полосатой мышечной ткани, представленной кардиомиоцитами и имеющей ряд отличий от ткани скелетных мышц. Кардиомиоциты составляют около 25% от общего числа клеток сердца и около 70% массы миокарда. В составе стенок сердца имеются фибробласты, гладкомышечные клетки сосудов, эндотелиальные и нервные клетки.

    В мембране кардиомиоцитов содержатся белки, выполняющие транспортные, ферментативные и рецепторные функции. Среди последних - рецепторы гормонов, катехоламинов и других сигнальных молекул. Кардиомиоциты имеют одно или несколько ядер, множество рибосом и аппарат Гольджи. Они способны синтезировать сократительные и белковые молекулы. В этих клетках синтезируются некоторые белки, специфические для определенных стадий клеточного цикла. Однако кардиомиоциты рано теряют способность делиться и их созревание, равно как и приспособление к возрастающим нагрузкам, сопровождается увеличением массы клеток и их размеров. Причины потери клетками способности делиться остаются неясными.

    Кардиомиоциты отличаются по своему строению, свойствам и функциям. Различают типичные, или сократительные, кардиомиоциты и атипичные, формирующие в сердце проводящую систему.

    Типичные кардиомиоциты - сократительные клетки, образующие предсердия и желудочки.

    Атипичные кардиомиоциты - клетки проводящей системы сердца, обеспечивающие возникновение возбуждения в сердце и проведение его от места возникновения к сократительным элементам предсердий и желудочков.

    Абсолютное большинство кардиомиоцитов (волокон) сердечной мышцы принадлежит к рабочему миокарду, который обеспечивает сокращения сердца. Сокращение миокарда называют систолой , расслабление - диастолой. Имеются также атипичные кардиомиоциты и волокна сердца, функцией которых является генерация возбуждения и проведение его к сократительному миокарду предсердий и желудочков. Эти клетки и волокна формируют проводящую систему сердца.

    Сердце окружено перикардом - околосердечной сумкой, отграничивающей сердце от соседних органов. Перикард состоит из фиброзного слоя и двух листков серозного перикарда. Висцеральный листок, называемый эпикардом , сращен с поверхностью сердца, а париетальный - с фиброзным слоем перикарда. Щель между этими листками заполнена серозной жидкостью, наличие которой уменьшает трение сердца с окружающими структурами. Относительно плотный наружный слой перикарда защищает сердце от перерастяжения и чрезмерного переполнения кровью. Внутренняя поверхность сердца представлена эндотелиальной выстилкой, называемой эндокардом. Между эндокардом и перикардом располагается миокард - сократительные волокна сердца.

    Проводящая система сердца

    Проводящая система сердца - совокупность атипичных кардиомиоцитов, образующих узлы: синоатриальный и атриовентрикулярный, межузловые тракты Бахмана, Венкебаха и Тореля, пучки Гиса и волокона Пуркинье.

    Функциями проводящей системы сердца являются генерация потенциала действия, проведение его к сократительному миокарду, инициирование сокращения и обеспечение определенной последовательности сокращений предсердий и желудочков. Возникновение возбуждения в водителе ритма осуществляется с определенным ритмом произвольно, без воздействия внешних стимулов. Это свойство клеток водителя ритма получило название автоматик.

    Проводящая система сердца состоит из узлов, пучков и волокон, сформированных атипичными мышечными клетками. В ее структуру входит синоатриальный (СА) узел, расположенный в стенке правого предсердия спереди устья верхней полой вены (рис. 1).

    Рис. 1. Схематическое строение проводящей системы сердца

    От СА-узла отходят пучки (Бахмана, Венкебаха, Тореля) атипичных волокон. Поперечный пучок (Бахмана) проводит возбуждение к миокарду правого и левого предсердий, а продольные - к атриовентрикулярному (АВ) узлу, расположенному под эндокардом правого предсердия в его нижнем углу в области, прилегающей к межпредсердной и атриовентрикулярной перегородкам. От АВ-узла отходит пучок Гпса. Он проводит возбуждение к миокарду желудочков и поскольку на границе миокарда предсердий и желудочков располагается соединительнотканная перегородка, образованная плотными фиброзными волоконами, то у здорового человека пучок Гиса является единственным путем, по которому потенциал действия может распространиться к желудочкам.

    Начальная часть (ствол пучка Гиса) расположена в перепончатой части межжелудочковой перегородки и делится на правую и левую ножки пучка Гиса, которые также находятся в межжелудочковой перегородке. Левая ножка делится на переднюю и заднюю ветви, которые, как и правая ножка пучка Гиса, ветвятся и заканчиваются волокнами Пуркинье. Волокна Пуркинье расположены в субэндокардиальной области сердца и проводят потенциалы действия непосредственно к сократительному миокарду.

    Механизм автоматик и проведение возбуждения по проводящей системе

    Генерация потенциалов действия осуществляется в нормальных условиях специализированными клетками СА-узла, который называют водителем ритма 1-го порядка или пейсмекером. У здорового взрослого человека в нем ритмично генеририруются потенциалы действия с частотой 60-80 за 1 мин. Источником этих потенциалов являются атипичные круглые клетки СА-узла, имеющие небольшие размеры, содержащие мало органелл и редуцированный сократительный аппарат. Иногда их называют Р-клетками. В узле имеются также клетки вытянутой формы, занимающие промежуточное положение между атипичными и обычными сократительными кардиомиоцитами предсердий. Их называют переходными клетками.

    Р-клетки покрыты цитоплазматической мембраной, содержащей ряд разнообразных ионных каналов. Среди них имеются пассивные и потенциалзависимые ионные каналы. Потенциал покоя в этих клетках составляет 40-60 мВ и является неустойчивым, что обусловлено различной проницаемостью ионных каналов. Во время диастолы сердца мембрана клетки самопроизвольно медленно деполяризуется. Этот процесс назван медленной диастолической деполяризацией (МДД) (рис. 2).

    Рис. 2. Потенциалы действия сократительных миоцитов миокарда (а) и атипичных клеток СА-узла (б) и их ионные токи. Пояснения в тексте

    Как видно на рис. 2, сразу же после окончания предыдущего потенциала действия начинается спонтанная МДД мембраны клетки. МДД в самом начале ее развития обусловлена входом ионов Na+ через пассивные натриевые каналы и задержкой выхода ионов К+ вследствие закрытия пассивных калиевых каналов и снижения выхода ионов К+ из клетки. Вспомним, что выходящие через эти каналы ионы К обычно обеспечивают реполяризацию и даже некоторую степень гиперполяризации мембраны. Очевидно, что снижение проницаемости калиевых каналов и задержка выхода ионов К+ из Р-клетки вместе с поступлением в клетку ионов Na+ будут вести к накоплению положительных зарядов на внутренней поверхности мембраны и развитию МДД. МДД в области значений Eкр (около-40 мВ) сопровождается открытием потенциалзависимых медленных кальциевых каналов, через которые в клетку поступают ионы Са2+, обусловливающие развитие поздней части МДД и фазы ноль потенциала действия. Хотя допускается, что в это время возможно дополнительное поступление в клетку ионов Na+ через кальциевые каналы (кальций-натриевые каналы), но решающую роль в развитии самоускоряющейся фазы деполяризации и перезарядке мембраны играют входящие в пейсмекерную клетку ионы Са2+. Генерация потенциала действия развивается относительно медленно, так как вход ионов Са2+ и Na+ в клетку происходит через медленные ионные каналы.

    Перезарядка мембраны ведет к инактивации кальциевых и натриевых каналов и прекращению входа ионов в клетку. К этому времени нарастает выход из клетки ионов К+ через медленные потенциалзависимые калиевые каналы, открытие которых происходит при Eкр одновременно с активацией упоминавшихся кальциевых и натриевых каналов. Выходящие ионы К+ реполяризуют и несколько гиперполяризуют мембрану, после чего их выход из клетки задерживается и таким образом процесс самовозбуждения клетки повторяется. Ионное равновесие в клетке поддерживается работой натрий-калиевого насоса и натрий-кальциевого обменного механизма. Частота возникновения потенциалов действия в пейсмекере зависит от скорости спонтанной деполяризации. При возрастании этой скорости частота генерации пейсмекерных потенциалов и частота сердечных сокращений увеличиваются.

    Из СА-узла потенциал распространяется со скоростью около 1 м/с в радиальном направлении на миокард правого предсердия и по специализированным проводящим путям на миокард левого предсердия и к АВ-узлу. Последний сформирован теми же типами клеток, что и СА-узел. Они также обладают способностью самовозбуждаться, но в нормальных условиях она не проявляется. Клетки АВ-узла могут начать генерировать потенциалы действия и стать водителем ритма сердца, когда к ним не поступают потенциалы действия от СА-узла. В обычных условиях потенциалы действия, возникшие в СА-узле, проводятся через область АВ-узла к волокнам пучка Гиса. Скорость их проведения в области АВ-узла резко уменьшается и промежуток времени, необходимый для распространения потенциала действия, удлиняется до 0,05 с. Эту временную задержку проведения потенциала действия в области АВ-узла называют атриовентрикулярной задержкой.

    Одной из причин АВ-задержки является особенность ионных и, прежде всего кальциевых ионных, каналов мембран клеток, формирующих АВ-узел. Это находит свое отражение в более низкой скорости МДД и генерации потенциала действия этими клетками. Кроме того, клетки промежуточного участка АВ-узла характеризуются более продолжительным периодом рефрактерности, превышающим по времени фазу реполяризации потенциала действия. Проведение возбуждения в области АВ-узла предполагает его возникновение и передачу с клетки на клетку, поэтому замедление этих процессов на каждой клетке, участвующей в проведении потенциала действия, обусловливает более длительное суммарное время проведения потенциала через АВ-узел.

    АВ-задержка имеет важное физиологическое значение в установлении определенной последовательности систол предсердий и желудочков. В нормальных условиях систола предсердий всегда предшествует систоле желудочков и систола желудочков начинается сразу же после завершения систолы предсердий. Именно благодаря АВ-задержке проведения потенциала действия и более позднего возбуждения миокарда желудочков по отношению к миокарду предсердий, желудочки заполняются необходимым объемом крови, а предсердия успевают совершить систолу (прссистолу) и изгнать дополнительный объем крови в желудочки. Объем крови в полостях желудочков, накапливаемый к началу их систолы, способствует осуществлению наиболее эффективного сокращения желудочков.

    В условиях, когда нарушена функция СА-узла или имеется блокада проведения потенциала действия от СА-узла к АВ-узлу, роль водителя ритма сердца может взять на себя АВ-узел. Очевидно, что вследствие более низких скоростей МДД и развития потенциала действия клеток этого узла частота генерируемых им потенциалов действия будет ниже (около 40- 50 в 1 мин), чем частота генерации потенциалов клетками С А-узла.

    Время от момента прекращения поступления потенциалов действия от водителя ритма к АВ-узлу до момента проявления его автоматии называют преавтоматической паузой. Ее длительность обычно находится в пределах 5-20 с. В это время сердце не сокращается и чем короче преавтоматическая пауза, тем лучше для больного человека.

    При нарушении функции СА- и АВ-узлов водителем ритма может стать пучок Гиса. При этом максимальная частота его возбуждений составит 30-40 в 1 мин. При такой частоте сокращений сердца даже в состоянии покоя у человека будут проявляться симптомы недостаточности кровообращения. Волокна Пуркинье могут генерировать до 20 импульсов в 1 мин. Из приведенных данных видно, что в проводящей системе сердца существует градиент автомашин - постепенное снижение частоты генерации потенциалов действия ее структурами по направлению от СА-узла к волокнам Пуркинье.

    Преодолев АВ-узел, потенциал действия распространяется на пучок Гиса, затем на правую ножку, левую ножку пучка Гиса и ее ветви и достигает волокон Пуркинье, где скорость его проведения возрастает до 1-4 м/с и за 0,12-0,2 с потенциал действия достигает окончаний волокон Пуркинье, с помощью которых проводящая система взаимодействует с клетками сократительного миокарда.

    Волокна Пуркинье сформированы клетками, имеющими диаметр 70-80 мкм. Полагают, что это является одной из причин того, что скорость проведения потенциала действия данными клетками достигает наиболее высоких значений - 4 м/с по сравнению со скоростью в любых других клетках миокарда. Время проведения возбуждения по волокнам проводящей системы, связывающим СА- и АВ-узлы, АВ-узлу, пучку Гиса, его ножкам и волокнам Пуркинье до миокарда желудочков определяет продолжительность интервала РО на ЭКГ и колеблется в норме в пределах 0,12-0,2 с.

    Не исключается, что в передаче возбуждения с волокон Пуркинье на сократительные кардиомиоциты принимают участие переходные клетки, характеризующиеся как промежуточные между клетками Пуркинье и сократительными кардиомио- цитами, структурой и свойствами.

    В скелетной мышце к каждой клетке поступает потенциал действия по аксону мотонейрона и после сииаптической передачи сигнала на мембране каждого миоцита генерируется собственный потенциал действия. Взаимодействие волокон Пуркинье и миокарда совершенно иные. По всем волокнам Пуркинье к миокарду предсердий и обоих желудочков проводится потенциал действия, возникший в одном источнике - водителе ритма сердца. Этот потенциал проводится в точки контакта окончаний волокон и сократительных кардиомиоцитов в субэндокардиальной поверхности миокарда, но не к каждому миоциту. Между волокнами Пуркинье и кардиомиоцитами отсутствуют синапсы и нейромедиаторы и возбуждение может быть передано с проводящей системы на миокард через ионные каналы щелевых контактов.

    Возникающий в ответ на мембранах части сократительных кардиомиоцитов потенциал проводится по поверхности мембран и по Т-трубочкам внутрь миоцитов с помощью локальных круговых токов. Потенциал передается также соседним клеткам миокарда через каналы щелевых контактов вставочных дисков. Скорость передачи потенциала действия между миоцитами достигает в миокарде желудочков 0,3-1 м/с, что способствует синхронизации сокращения кардиомиоцитов и более эффективному сокращению миокарда. Нарушение передачи потенциалов через ионные каналы щелевых контактов может быть одной из причин десинхронизации сокращения миокарда и развития слабости его сокращения.

    В соответствии со строением проводящей системы потенциал действия достигает первоначально верхушечной области межжелудочковой перегородки, сосочковых мышц, верхушки миокарда. Возникшее в ответ на поступление этого потенциала в клетках сократительного миокарда возбуждение распространяется в направлениях от верхушки миокарда к его основанию и от эндокардиальной поверхности к эпикардиальной.

    Функции проводящей системы

    Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

    Возбуждение распространяется по предсердиям со скоростью 1 м/с, достигая атриовентрикулярного узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и атриовентрикулярным узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В атриовентрикулярном узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения (построен по принципу синапса) возникает некоторая задержка проведения возбуждения (скорость распространения составляет 0,2 м/с). Вследствие задержки возбуждение доходит до атриовентрикулярного узла и волокон Пуркинье лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

    Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

    Скорость распространения возбуждение в пучке Гиса и в волокнах Пуркинье достигает 4,5-5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т.е. синхронно. Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через атриовентрикулярный пучок, а по клеткам рабочего миокарда, т.е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались бы в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности. Это не позволило бы создать достаточного давления, обеспечивающего выброс крови в аорту.

    Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:

    спонтанную деполяризацию; ритмическую генерация импульсов (потенциалов действия); необходимую последовательность (координацию) сокращений предсердий и желудочков; синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).