Теория и схема кроветворения. Морфология клеток костного мозга


Одной из наиболее важных и сложных проблем гематологии является вопрос о генезе клеток крови.

За период существования учения о крови сменилось несколько теорий кроветворения. Впервые кровь, как отдельная ткань организма, была выделена в 1839 г. Schwann. Первое деление клеток крови – белых кровяных телец – на клетки лимфы и лейкоциты было предпринято в 1845 г. немецким патологом Рудольфом Вирховым. Однако уже к концу 19 века стало известно, что в крови находятся не 2, а 3 типа клеток: лейкоциты, эритроциты и тромбоциты. В связи с этим возник вопрос об их происхождении.

Итак, теории кроветворения:

    Полифелитическая теория . Ее основоположником является немецкий ученый, нобелевский лауреат Пауль Эрлих, который в 1878 году изобрел способ дифференциальной окраски клеток крови и выявил зернистость в лейкоцитах. Учитывая морфологические различия клеток, он описал 8 видов лейкоцитов:

Незернистые лейкоциты

    Лимфоциты,

    Мононуклеары,

    Переходные клетки;

Зернистые лейкоциты

      Нейтрофилы,

      Эозинофилы,

      Мелкозернистые базофилы,

      Крупнозернистые базофилы,

      β-амфифильные («амфи» – с обеих сторон, «филия» – наклонность) лейкоциты.

Обращаясь к вопросу о генезе этих клеток, Эрлих предположил, что незернистые лейкоциты происходят из лимфоидной ткани, а зернистые лейкоциты (которые он выделил в систему миелоидных клеток) берут начало в КМ. Таким образом, согласно его суждениям, существует 2 системы кроветворения – лимфоидная и миелоидная. При этом каждая из описанных им 8 клеток имеет своего предшественника. То есть, суть полифилетической теории состоит в том, что каждый росток кроветворения имеет свою родоначальную клетку.

    Триалистическая теория предложена Schilling (1919 г.) и Aschoff (1924 г.). Согласно их убеждениям, эритроциты, гранулоциты и тромбоциты входят в состав миелоидной ткани и имеют 1 клетку-предшественницу, которая находится в КМ. Лимфоидные клетки входят в состав лимфоидной ткани. Моноциты происходят из ретикулоэндотелиальной системы.

    Дуалистическая теория , согласно которой существуют 2 родоначальные клетки - отдельно для миелоидного и лимфоидного ростков кроветворения. Её предложил Nehely (1900 г.) и Schridde (1923 г.). Она по существу является подтверждением 1-ой теории.

Что общего у этих 3-х теорий?

    Утверждение того, что в периферической крови находятся конечные клетки,

    Разделение кроветворной ткани на лимфоидную и миелоидную,

    Отсутствие допущения о существовании одной родоначальной клетки, единой для всех ростков гемопоэза.

    Умеренно-унитарная теория (1920 г., Александр Николаевич Крюков – основоположник отечественной гематологии).Суть теории - между материнскими клетками миелоидного и лимфоидного ряда существуют лишь функциональные различия. Анатомически она едина – это (по Крюкову) «лимфоидоцит» (или гемоцитобласт), образующийся из ретикулярной клетки, отделившейся от синцития (гемогистобласта). Т.е. ретикулярная клетка → гемогистобласт → гемоцитобласт → цитобласт.

    В настоящее время находит свое подтверждение унитарная теория кроветворения, высказанная еще в начале 19 века (в 1916 г.) русским ученым Александром Александровичем Максимовым. Суть теории – все клетки крови образуются из одной стволовой клетки .

Согласно современной схеме кроветворения , предложенной в 1973 г. А.И. Воробьевым и И.Л. Чертковым все клетки крови подразделяются на 3 больших класса:

    Родоначальные (или стволовые) клетки. Они составляют 1-2%;

    Созревающие клетки – 25-40%;

    Зрелые клетки – 60-75%.

В пределах этих 3-х групп все гемопоэтические клетки (в зависимости от функциональных и морфологических особенностей) разделены на 6 классов:

I класс: ПСКК - полипотентные стволовые кроветворные клетки. Находятся в КМ и (возможно) в селезенке, могут циркулировать в периферической крови. В тимусе и лимфоузлах их нет.

Первые научные доказательства существования стволовых клеток появились в 60-х годах прошлого века. Так, в 1960 г. в лаборатории культуры тканей Университета в Торонто два канадских исследователя – J.E. Till и E.A. McCulloch обнаружили свойство кроветворных клеток образовывать колонии в селезенке у летально облученных мышей. Они облучали животных в смертельной дозе 6-7 Гр, затем в/в вводили им клетки КМ интактного (необлученного) животного. После трансплантации КМ в селезенке облученных мышей обнаруживались очаги кроветворения в виде макроскопических колоний клеток: гранулоцитарных, эритроидных, мегакариоцитарных и смешанных. Однако колонии из лимфоидных клеток при этом не образовывались. При последующем введении одной из подобных колоний другой смертельно облученной мыши в ее селезенке вновь развивались колонии с трехростковым кроветворением. Позднее было доказано, что каждая такая колония – потомство 1 клетки. Как? Вводимые костномозговые клетки «метили» облучением в низкой дозе (2 Гр). Эта «метка» (кольцевая хромосома) обнаруживалась в клетках всех колониальных линий. Эта родоначальная клетка получила название – КОЕ с – колониеобразующая единица в селезенке. КОЕ с относят к категории более зрелых ПСКК. Кроме того, с помощью хромосомного маркера также была обнаружена способность КОЕ с дифференцироваться в лимфоциты, поскольку кольцевая хромосома выявлялась не только в клетках селезеночных колоний, но и в лимфоцитах лимфатических узлов, тимуса и костного мозга облученных животных. Наконец было показано, что культура КМ на агаре приводит к образованию гранулоцитов и моноцитов.

Свойства ПСКК:

    Обладают высоким (но не безграничным) пролиферативным потенциалом - могут проделывать не более 100 митозов.

    Обладают способностью дифференцироваться в направлении всех ростков кроветворения.

    Дифференцировка ПСКК (на путь которой вступает не более 40% клеток) регулируется сугубо локально, не зависит от внешних воздействий и потребностей организма.

    % тимидинового самоубийства равняется 10. Это означает, что 90% ПСКК находятся вне митотического цикла (в стадии G 0) и лишь 10% - в делении.

II класс: Полустволовые (частично детерминированные) кроветворные клетки . К ним относятся:

    КОЕ-ГЭММ – общая клетка-предшественница миело- и эритропоэза, дающая смешанные колонии из гранулоцитов, эритроцитов, мегакариоцитов и макрофагов, которая дифференцируется в:

    КОЕ-ГМ – клетки, дающие колонии из гранулоцитов и моноцитов,

    КОЕ-ГЭ – клетки, дающие колонии из гранулоцитов и эритроцитов,

    КОЕ-МегЭ - клетки, дающие колонии из мегакариоцитов и эритроцитов,

    Общая клетка-предшественница лимфопоэза - ?

Наличие общей клетки-предшественницы для миелопоэза и эритропоэза было доказано в 1971 г. учеными Nowell и Ford на примере хронического миелолейкоза. Учеными было сделано любопытное открытие: у 95% больных с данной патологией во всех клетках крови (за исключением лимфоцитов) обнаруживалась филадельфийcкая (Рh) хромосома. Это позволило сделать заключение о существовании клетки-родоначальницы, единой для трех ростков миелопоэза – гранулоцитов, эритроцитов и мегакариоцитов, и отдельно от этого – клеток-предшественниц лимфоцитов.

Свойства клеток :

    Сниженный пролиферативный потенциал и более высокая пролиферативная активность по сравнению с ПСКК. % тимидинового самоубийства равняется 30. Т.е. 30% клеток находятся в делении, 70% - в покое.

    Дифференцировка клеток регулируется ростовыми факторами, секреция которых зависит от существующего запроса организма. Т.е. это уже не стохастический, а детерминированный процесс.

III класс: Коммитированные (унипотентные) клетки - родоначальницы отдельных ростков гемопоэза. К ним относятся:

А) клетки-предшественницы лимфопоэза:

    преТ – родоначальница Т-лимфоцитов,

    преВ – родоначальница В-лимфоцитов.

Б) клетки-предшественницы миелопоэза:

    КОЕ-Г – родоначальница гранулоцитов (нейтрофилов),

    КОЕ-ЭО – родоначальница эозинофилов,

    КОЕ-Б – родоначальница базофилов,

    КОЕ-М – родоначальница моноцитов,

    КОЕ-Мег – родоначальница мегакариоцитов.

В) клетки-предшественницы эритропоэза:

    Незрелая и зрелая БОЕ-Э - бурстобразующие единицы, нечувствительные к эритропоэтину (ЭП),

    КОЕ-Э – ЭП-чувствительный продукт дифференцировки БОЕ-Э.

Свойства клеток:

    Имеют ограниченную способность к самоподдрежанию (10-15 митозов), но более высокую (по сравнению с предыдущим классом клеток) пролиферативную активность (% тимидинового самоубийства равен 60, т.е. 60% клеток находятся в делении, а 40% в покоящемся состоянии).

    Дифференцировка клеток контролируется гуморальными факторами – поэтинами строго по запросу организма.

Современная схема кроветворения подразделяет все клетки крови на 6 классов.

1) В первом классе определяются только стволовые клетки (СКК) – класс полипотентных клеток – предшественников . Эти клетки лимфоцитоподобные. Обычными способами микроскопирования не выделяются. Редко делятся, обладают свойством самоподдержания.

Одна СКК обеспечивает суточный объм крови: 200 млрд. эритроцитов и 300 млрд. лейкоцитов.

За прародительницу всех клеток крови принимается единственная СКК. Это привело к разработке Унитарной теории (А.А. Максимов).

2) Класс частично детерминированных клеток-предшественников. Клетки еще полипотентны, но среди них уже выделяют 2 типа клеток:

Клетка-предшественница лимфопоэза;

Клетка-предшественница миелопоэза.

От сюда различают два вида ткани: лимфоидная , которая составляет лимфоидные органы (тимус, селезнка, лимфоузлы, скопления лимфатических узелков); миелоидная , составляющая миелоидные органы (ККМ).

В лимфоидных органах – это ретикулярная и соединительная ткани, и последняя блокирует миелопоэз. В миелоидных органах – это ретикулярная ткань. Т.о., если меняется микроокружение, соединительная ткань теряет блокирующее свойство, и миелоидная ткань встречается в лимфоидных органах.

3) Класс унипотентных клеток-предшественников. Каждая клетка дает свой "росток"

Клетки 2-го и 3-го классов также морфологически не распознаваемы. Но эти клетки могут образовывать колонии в селезнке у смертельно облученных животных или при культивировании на питательных средах – это т.н. колонии-образующие единицы (КОЭ).

На клетки 2-го класса оказывает влияние микроокружение, а на клетки 3-го класса влияют гормоны – поэтины . Поэтому клетки 3-го класса называются поэтин-чувствительными клетками. Поэтины вырабатываются в различных органах: эритропоэтины вырабатываются в почках, желудке, яичке.; В-активин и Т-активин – в тимусе. Поэтины могут быть возбуждающего и блокирующего характера.

При установлении патологий на уровне 3-го класса требуется гормональное лечение. Около 50% патологий для данного класса практически излечимо.

4) Класс пролиферирующих клеток. Это морфологически распознаваемые клетки.

Название каждой клетки данного класса заканчивается на "-бласт". Возможна регуляция пролиферации за счет цитостатинов , цитомитогенетиков .

5) Класс созревающих клеток. Происходит в основном их дифференцировка, при этом:

Они постепенно уменьшаются в размерах;

Изменяется форма ядра (от круглой до сегментоядерного или вообще выбрасывается). Ядро становится менее базофильным;

Меняется цвет цитоплазмы;

Появляется специфическая зернистость.

Часть клеток продолжает делиться

– клетки эритроидного ряда;

– гранулоциты.

6) Класс зрелых клеток.

Они функционируют или в крови (эритроциты, тромбоциты), или за пределами сосудистого русла (лейкоциты).

В данной статье будет описана схема кроветворения. Существование нашего организма немыслимо без поддержания на высоком уровне функционирования как системы иммунитета, так и системы крови. Каждая составляющая нашего сложно устроенного тела выполняет свою специфическую работу, обеспечивающую в итоге существование.

К органам кроветворения относят железу тимус и костный мозг, лимфоузлы и селезенку, а также лимфоидную ткань в слизистых органов пищеварения, кожи и дыхания. Они расположены в разных местах, но по своей сути это общая система. В ней постоянно передвигается и обновляется кровь. В результате питательные вещества поступают в тканевую и лимфатическую жидкости.

Какие органы входят в состав этой жизнеобеспечивающей системы

Кроветворением или гемоцитопоэзом называют процесс, при котором образуются форменные элементы крови - эритроциты, лейкоциты, тромбоциты.

Органы кроветворения классифицируются в свою очередь на два вида:

  • Центральные.
  • Периферические.

К центральным можно отнести красный костный мозг, который представляет собой место образования эритроцитов, тромбоцитов, гранулосодержащих клеток крови и предшественников лимфоцитов, а также тимус - центральный орган лимфообразования.

Но схема кроветворения этим не ограничивается. В периферических органах происходит деление транспортированных из предыдущей группы Т- и В-лимфоцитов с проведением их дальнейшей специализации под влиянием антигенов в эффекторные клетки, которые осуществляют непосредственно функцию иммунной защиты, и клетки памяти.

Здесь же они и заканчивают свой жизненный цикл.

Схема кроветворения уникальна:

  • Ретикулярные клетки выполняют механическую функцию, осуществляют синтез компонентов основного вещества, обеспечивают специфичность клеток микроокружения.
  • Остеогенные клетки составляют эндост, обеспечивая более интенсивное кроветворение.
  • Адвентициальные клетки окружают кровеносные сосуды, покрывая более 50% наружной поверхности капилляров.
  • Эндотелиальные клетки синтезируют белок коллаген, гемопоэтины (стимуляторы кровообразования).
  • Макрофаги за счет наличия лизосом и фагосом уничтожают чужеродные клетки, участвуют в построении гемовой части гемоглобина, путем передачи ему трансферрина.
  • Межклеточное вещество - кладовая коллагена различных типов, гликопротеинов и протеогликанов.

Рассмотрим основные этапы кроветворения.

Эритропоэз

Процесс образования эритроцитов происходит в специальных эритробластических островках костного мозга. Такие островки представлены совокупностью макрофагов, окруженных клетками эритроцитарного ряда.

Именно эти эритроидные клетки, в свою очередь, берут свое начало от первоначальной колониеобразующей клетки (КОЕ-Э), участвующей во взаимодействии с группой макрофагов красного костного мозга. При этом все новообразованные клетки, начиная от проэритробласта и заканчивая ретикулоцитом, контактируют с фагоцитирующей клеткой за счет специального рецептора, который носит название сиалоадгезин.

Поэтому эти макрофаги, посредством окружения эритроцитарных клеток, являются как бы их "кормильцем", способствуя поступлению и накоплению в этих клетках крови не только веществ, стимулирующих процесс образования эритроцитов (эритропоэтин), но и витаминов кроветворения, таких как, например, витамин D3, и молекул ферритина. Таким образом, можно достаточно точно утверждать, что это микроокружение в постоянном режиме обеспечивает все новые и новые очаги эритропоэза.

Гранулоцитопоэз

Гранулоцитосодержащие гемопоэтические клетки занимают не центральное, а периферическое местоположение. Незрелые формы этих клеток крови окружены белковыми соединениями - протеогликанами. В процессе деления общее количество этих клеток более чем в 3 раза превышает число эритроцитов и в 20 раз превышает числовой показатель одноименных клеток, расположенных в периферической кровеносной системе.

Тромбоцитопоэз

Мегакариобластические и уже созревшие формы клеток (мегакариоциты) расположены так, что их часть цитоплазматической жидкости, расположенной по периферии, проходит через поровые отверстия внутрь сосуда, поэтому отделение тромбоцитов осуществляется именно в кровоток. То есть мегакариоциты красного костного мозга отвечают за образование тромбоцитов.

Лимфоцтопоэз и моноцитопоэз

В чем еще состоят особенности кроветворения?

Среди клеток миелоидного ряда имеют место и незначительные скопления лимфоцитарных и моноцитарных представителей кроветворения, окружающих сосуд.

В норме при адекватно осуществляющихся физиологических условиях только созревшие фирменные элементы способны к проникновению через отверстия в стенке синусов костного мозга, поэтому при обнаружении в мазке крови и его микроскопировании миелоцитов и эритробластов, смело можно утверждать о наличии патологического процесса.

Желтый костный мозг

К органам кроветворения относится и желтый костный мозг.

Medulla ossium flava заполняет диафизы трубчатых костей и содержит большое количество клеток адипоцтов (жировых клеток) с высоким уровнем насыщения этого жира пигментом липохромом, обеспечивая окраску в желтый цвет, отсюда и пошло название желтого костного мозга.

В условиях обычной жизнедеятельности этот орган не может выполнять функцию кровообразования. Но это не относится к состояниям, сопровождающимся развитием массивной кровопотери или шока различного генеза, при которых в тканях желтого мозга происходит образование очагов миелопоэза и запускается процесс дифференцировки поступающих сюда клеток, как стволовых, так и полустволовых.

Четкого отграничения одного вида костного мозга от другого нет. Это разделение относительно, так как незначительное количество адипоцитов (клеток medulla ossium flava) содержится и в красном костном мозге. Их взаимоотношение меняется в зависимости от возрастных критериев, условий жизни, характера питания, особенностей функционирования эндокринной, нервной и других немаловажных систем организма.

Вилочковая железа

Тимус - орган, относящийся к центральным органам лимфопоэза и иммуногенеза. Активно участвует в процессе кроветворения.

Из прибывших сюда костномозговых предшественников Т-лимфоцитарных клеток происходит процесс антигеннезависимой дифференцировки в зрелые формы Т-лимфоцитов, выполняющих функции как клеточного, так и гуморального звена иммунитета.

В нем имеется корковое и мозговое вещество. Клетки коркового составляющего этого органа отделены от циркулирующей крови посредством гематотимусного барьера, который препятствует воздействию на дифференцирующиеся лимфатические клетки избыточного количества антигенов.

Поэтому удаление вилочковой железы (тимэктомия), проведенное при опытах на новорожденных животных, приводит к резкому угнетению пролиферации лимфоцитов абсолютно во всех лимфатических тканях кроветворных органов. Падает концентрация лимфоцитов крови и лейкоцитов, наблюдаются явления атрофии органов, кровоизлияний, вследствие чего, организм не способен оказать сопротивление инфекционным агентам.

Селезенка

Самый крупный орган периферической системы кроветворения, участвующий в формировании гуморального и клеточного иммунитета, удалении старых и поврежденных эритроцитов и тромбоцитов ("кладбище эритроцитов"), депонирование крови и тромбоцитарных клеток крови (1/3 всего объема).

Лимфатические узлы

В их ткани осуществляется процесс антигензависимой пролиферации и последующей дифференцировки Т- и В-лимфоцитов в клетки-эффекторы и образованием Т- и В-клеток памяти.

Помимо обычных лимфоцитов, у некоторых представителей млекопитающих обнаружены гемолимфатические узлы, с содержащейся в их синусах кровью. У человека же такие узлы встречаются редко. Расположены по ходу почечных артерий околопочечной клетчатки, либо по ходу брюшинной части аорты и, крайне редко, в заднем средостении.

Единая иммунная система слизистых оболочек (MALT) - включает в себя лимфоциты слизистых желудочно-кишечного тракта, бронхо-легочной системы, мочеполовых путей и выводных протоков молочных и слюнных желез.

Продукты для кроветворения

Кровь выполняет важные функции, такие как транспортировка кислорода и питательных веществ к клеткам, удаление отходов через органы выделительной системы. Оптимальная работа человеческого организма в целом зависит от крови. Поэтому условия жизни и питание оказывают влияние на ее качество.

Продукты, способствующие кроветворению: шампиньоны, ячмень, грибы шиитаке, кукуруза, овес, рис, лист одуванчика, финики, виноград, логанова ягода, соевые бобы, дудник, пшеничные отруби, авокадо, ростки люцерны, артишок, свекла, капуста, сельдерей, морская капуста, шпинат, яблоки, абрикосы, пырей.

Нами подробно рассмотрена схема кроветворения.

Кроветворение (гемопоэз) - процесс образования, развития и созревания форменных элементов крови: эритроцитов (эритропоэз), лейкоцитов (лейкопоэз), тромбоцитов (тромбопоэз). У зародыша кроветворение начинается в желточном мешке; со 2-го месяца эту функцию берет на себя печень, а с 4-го месяца возникает костномозговое кроветворение, которое к моменту рождения полностью вытесняет печеночное. Как в печени, так и в костном мозге происходит образование эритроцитов, гранулоцитов и тромбоцитов. Лимфоциты появляются лишь на 4-м месяце, когда образуются лимфатические узлы; селезенка начинает их продуцировать только после рождения. Красные кровяные клетки плода первых 3 месяцев - мегалобласты (крупные ядерные клетки, превращающиеся при созревании в крупные эритроциты - мегалоциты) постепенно сменяются нормобластами, дающими начало нормальным эритроцитам. Во внеутробной жизни мегалобластический (эмбриональный) тип кроветворения возникает при пернициозной анемии и сходных с ней заболеваниях. К моменту рождения плода устанавливается окончательный характер кроветворения. У ребенка оно в принципе не отличается от кроветворения взрослого. До 4-летнего возраста лимфопоэз более активен, чем гранулопоэз, затем наступает обычное для взрослых их соотношение.

Родоначальником всех кровяных элементов является первичная кровяная клетка - гемоцитобласт. Из него в костном мозге развиваются проэритробласты, дающие начало образованию эритроцитов, миелобласты, из которых образуются все гранулоциты (нейтрофилы, эозинофилы, базофилы), монобласты - родоначальники моноцитов и мегакариобласты, являющиеся источником образования тромбоцитов. В лимфоидных органах гемоцитобласт превращается в лимфобласт - родоначальник лимфоцитов. Имеется также другая теория, которая предполагает существование так называемые стволовой клетки, функционирующей как родоначальная клетка кроветворения. Это понятие функциональное. Стволовой клеткой может быть элемент, потентный к кроветворению: ретикулярная, лимфоидно-ретикулярная клетка, лимфоцит; гемоцитобласт же рассматривается как одна из фаз клеточного развития от стволовой до зрелой клетки крови. Из клеток ретикулярной стромы костного мозга образуются плазмоциты - клетки, наряду с лимфоцитами вырабатывающие гамма-глобулин и играющие важную роль в защите организма от инфекций. Созревание клеток происходит на месте кроветворения, в норме в периферическую кровь поступают только зрелые клетки. Клеточный состав крови и кроветворных органов представляет собой систему, находящуюся в здоровом организме в динамическом равновесии: происходящее непрерывно разрушение форменных элементов уравновешивается соответствующим кроветворением. Такое равновесие поддерживается комплексом регуляторных механизмов. На кроветворение влияют центральная и вегетативная нервная система, ряд гормонов, витаминов и специальных факторов кроветворения (фактор Касла, Цианокобаламин). При патологических состояниях одни факторы (кровопотеря, гемолиз, недостаток кислорода в крови, токсины некоторых микробов) стимулируют кроветворение, другие (недостаток железа, факторов Касла, гиперспленизм, лучевые поражения, токсины ряда вирусов) тормозят его.

Гемопоэз, или процесс кроветворения, происходит в организме в интенсивном и непрерывном режиме. В постоянно образуются клетки крови в достаточно большом объеме. Главная особенность нормального гемопоэза – продукция оптимального количества клеточных элементов в данный момент времени. Повышенная потребность человеческого организма в любом виде клеток приводит к ускорению работы костного мозга в несколько раз, что приводит к повышению их уровня в крови. В течение всей жизни кроветворная система вырабатывает около 5 тонн клеток крови.

Физиологические основы

Все клетки крови развиваются из одной гемопоэтической стволовой клетки.

Гемопоэз представляет собой многостадийный процесс деления и дифференцировки гемопоэтической , конечным результатом которого является поступление в кровеносное русло всех форменных элементов крови.

Эти стволовые клетки закладываются в организме человека в процессе эмбрионального развития в большом объеме, превышающем его нужды в течение всей жизни. Они активируются и вступают в свой жизненный цикл по мере необходимости для обеспечения достаточного количества клеточных элементов в периферической крови.

В процессе гемопоэза можно выделить два крупных ответвления:

  • миелопоэз (образование клеток тромбоцитарного, гранулоцитарного, моноцитарного, эритроцитарного ряда);
  • лимфопоэз (созревание лимфоцитов).

Особенности дифференцировки гемопоэтических клеток

Кроветворная ткань костного мозга объединяет в своем составе комбинацию морфологически нераспознаваемых гемопоэтических клеток-предшественниц и клеток специфических рядов дифференцировки. Все кроветворные клетки, нераспознаваемые с точки зрения морфологии – это гемопоэтические стволовые клетки, которые могут быть:

  • мультипотентными (дифференцируются во всех направлениях);
  • полипотентными (развиваются только по некоторым из них);
  • унипотентными (следуют только по определенному пути развития).

Другая часть клеток, которые удается распознать морфологически, формируется путем дифференцировки из более молодых предшественников, стремительно развивающихся дальше.

Миелопоэз может протекать в нескольких направлениях:

  • мегакариоцитарное;
  • эритроцитарное;
  • моноцитарное;
  • гранулоцитарное.

Лимфопоэз включает в себя две основные линии дифференцировки – образование лимфоцитов Т- и В-клеточного ряда. Каждая из них проходит в два этапа. Первый из них является антиген-независимым и заканчивается продукцией структурно зрелых, но иммунологически неактивных лимфоцитов. Следующий этап начинается после контакта с потенциальным антигеном и завершается выработкой специализированных иммунных клеток (Т-киллеров, Т-хелперов, Т-супрессоров, плазматических клеток, клеток памяти).

Каждый ряд дифференцировки кроветворных клеток дебютирует со стадии так называемых «бластов» (например, миелобласты). Для обозначения клеток промежуточного этапа используют приставку «про» и суффикс «цит» (например, проэритрокариоцит). Зрелые клеточные элементы имеют только суффикс «цит» (например, тромбоцит).

Следует отметить, что процесс дифференцировки различных видов клеточных элементов имеет свои особенности. Так, в гранулоцитарном ряде выделяют не одну, а несколько промежуточных стадий. В этом случае вслед за миелобластом образуется промиелоцит, затем миелоцит, метамиелоцит, а только после этого – зрелые клетки – эозинофилы, базофилы, нейтрофилы.

Регуляция кроветворения


Адекватный и быстрый ответ системы кроветворения на вновь возникающие потребности организма в клетках крови обеспечивают цитокины.

В норме регуляция гемопоэза осуществляется непосредственным влиянием микроокружения и гуморальными факторами, обладающими активирующим или угнетающим действием. Эти факторы получили название цитокины. Они позволяют обеспечивать адекватный и быстрый ответ системы кроветворения на вновь возникающие потребности организма в клетках крови. К цитокинам активирующего типа относятся:

  • факторы роста (колониестимулирующие);
  • эритропоэтины;
  • фактор стволовых клеток;
  • интерлейкины и др.

Угнетают клеточную активность и кроветворение следующие субстанции:

  • фактор некроза опухоли;
  • интерферон-гамма;
  • лейкоз-ингибирующий фактор и др.

При этом подавление роста одного вида клеток может приводить к усиленной дифференцировке другого.

Количество клеток в периферической крови регулируется по принципу обратной связи. Так, содержание эритроцитов в крови и насыщение их гемоглобином зависит от потребностей тканей в кислороде. Если она возрастает, то включаются не только компенсаторные механизмы (увеличение частоты дыхания и сердечных сокращений), но и стимулируется эритропоэз.

Заключение

Гемопоэз – сложный процесс, позволяющий поддерживать постоянство внутренней среды организма, адекватную работу которого обеспечивает большое количество физиологических механизмов.