Hno2 сильный электролит. Слабые электролиты


Электролиты – это вещества, сплавы веществ либо растворы, которые имеют способность электролитически проводить гальванический ток. Определить, к каким электролитам относится вещество, дозволено применяя теорию электролитической диссоциации.

Инструкция

1. Суть данной теории заключается в том, что при расплавлении (растворении в воде) фактически все электролиты раскладываются на ионы, которые бывают как позитивно, так и негативно заряженные (что и именуется электролитической диссоциацией). Под воздействием электрического тока негативные (анионы «-») движутся к аноду (+), а позитивно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит наименование «моляризация»).

2. Степень (a) электролитической диссоциации находится в зависимости от природы самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к всеобщему числу введенных в раствор молекул (N). Получаете: a = n / N

3. Таким образом, мощные электролиты – вещества, всецело распадающиеся на ионы при растворении в воде. К крепким электролитам, как водится, относятся вещества с сильнополярными либо ионными связями: это соли, которые отлично растворимы, крепкие кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также мощные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В крепком электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные – фактически нет.

4. Слабые электролиты – такие вещества, которые диссоциируют на ионы лишь отчасти. Слабые электролиты совместно с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе крепкой концентрации ионов.К слабым относятся:- органические кислоты (примерно все) (C2H5COOH, CH3COOH и пр.);- некоторые из неорганических кислот (H2S, H2CO3 и пр.);- фактически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);- вода.Они фактически не проводят электрический ток, либо проводят, но дрянно.

Крепкое основание – неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) либо щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ?, Ва(ОН) ?.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н?РО?

Инструкция

1. Мощные основания проявляют химические свойства, характерные для всех гидроксидов. Присутствие щелочей в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте метилоранж, фенолфталеин либо опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем крепче основание, тем насыщеннее окрашивается индикатор.

2. Если нужно узнать какие именно щелочи вам представлены, то проведите добротный обзор растворов. Особенно распространенные мощные основания – гидроксиды лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом дозволено выделить Са(ОН) ?, Ва(ОН) ? и LiOH. При взаимодействии с ортофосфорной кислотой образуются нерастворимые осадки. Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.3 Са(ОН) ? + 2 Н?РО? –? Ca?(PO?)??+ 6 H?О3 Ва(ОН) ? +2 Н?РО? –? Ва?(PO?)??+ 6 H?О3 LiOH + Н?РО? –? Li?РО?? + 3 H?ОПроцедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени дозволено добротно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-алый цвет. Соли бария – в зеленый, а соли кальция – в красный.

3. Оставшиеся щелочи образуют растворимые ортофосфаты.3 NaOH + Н?РО?–? Na?РО? + 3 H?О3 KOH + Н?РО?–? K?РО? + 3 H?ОНеобходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, где находится соль натрия – пламя окрасится в ясно-желтый цвет, а ортофосфат калия – в розово-фиолетовый. Таким образом имея наименьший комплект оборудования и реактивов вы определили все данные вам мощные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, впрочем, в растворенном либо расплавленном виде становится проводником. Отчего происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах либо расплавах диссоциируют на позитивно заряженные и негативно заряженные ионы, вследствие чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами владеет множество солей, кислот, оснований.

Инструкция

1. Все ли электролиты идентичны по силе, то есть являются классными проводниками тока? Нет, от того что многие вещества в растворах либо расплавах диссоциируют лишь в малой степени. Следственно электролиты подразделяются на крепкие, средней силы и слабые.

2. Какие вещества относятся к мощным электролитам? Такие вещества, в растворах либо расплавах которых диссоциации подвергаются фактически 100% молекул, причем вне зависимости от концентрации раствора. В перечень крепких электролитов входит безусловное множество растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

3. Чем отличаются от них электролиты средней силы? Тем, что они диссоциируют в значительно меньшей степени (на ионы распадаются от 3% до 30% молекул). Типичные представители таких электролитов – серная и ортофосфорная кислоты.

4. А как ведут себя в растворах либо расплавах слабые электролиты ? Во-первых, они диссоциируют в дюже малой степени (не огромнее 3% от всеобщего числа молекул), во-вторых, их диссоциация идет тем дрянней и неторопливей, чем выше насыщенность раствора. К таким электролитам относятся, скажем, нашатырный спирт (гидроксид аммония), множество органических и неорганических кислот (включая плавиковую – HF) и, разумеется, каждым нам знакомая вода. От того что лишь жалко малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

5. Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости от многих факторов: природы самого электролита, растворителя, температуры. Следственно само это распределение в знаменитой степени условно. Чай одно и то же вещество может при разных условиях быть и мощным электролитом, и слабым. Для оценки силы электролита была введена особая величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; мощные электролиты закону действующих масс не подчиняются.

Соли – это химические вещества, состоящие из катиона, то есть позитивно заряженного иона, металла и негативно заряженного аниона – кислотного остатка. Типов солей много: типичные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как дозволено определить основание соли?

Инструкция

1. Представим, у вас есть четыре идентичные емкости с жгучими растворами. Вы знаете, что это – растворы углекислого лития, углекислого натрия, углекислого калия и углекислого бария. Ваша задача: определить, какая соль содержится в всей емкости.

2. Припомните физические и химические свойства соединений этих металлов. Литий, натрий, калий – щелочные металлы первой группы, их свойства дюже схожи, активность усиливается от лития к калию. Барий – щелочноземельный металл 2-й группы. Его углекислая соль отменно растворяется в жгучей воде, но дрянно растворяется в холодной. Стоп! Вот и первая вероятность сразу определить, в какой емкости содержится углекислый барий.

3. Охладите емкости, скажем, разместив их в сосуд со льдом. Три раствора останутся прозрачными, а четвертый стремительно помутнеет, начнет выпадать белый осадок. Вот в нем-то и находится соль бария. Отложите эту емкость в сторону.

4. Дозволено стремительно определить углекислый барий и иным методом. Поочередно отливайте немножко раствора в иную емкость с раствором какой-нибудь сернокислой соли (скажем, сульфата натрия). Только ионы бария, связываясь с сульфат-ионами, мигом образуют плотный белый осадок.

5. Выходит, углекислый барий вы определили. Но как вам различить соли 3 щелочных металлов? Это достаточно легко сделать, вам потребуются фарфоровые чашки для выпаривания и спиртовка.

6. Отлейте малое число всего раствора в отдельную фарфоровую чашку и выпарите воду на огне спиртовки. Образуются мелкие кристаллики. Внесите их в пламя спиртовки либо горелки Бунзена – с поддержкой стального пинцета, либо фарфоровой ложечки. Ваша задача – подметить цвет запылавшего «язычка» пламени. Если это соль лития – цвет будет ясно-красным. Натрий окрасит пламя в интенсивный желтый цвет, а калий – в пурпурно-фиолетовый. Кстати, если бы таким же образом испытали соль бария – цвет пламени должен был быть зеленым.

Полезный совет
Один известный химик в молодости приблизительно так же разоблачил алчную хозяйку пансиона. Он посыпал остатки недоеденного блюда хлористым литием – веществом, безусловно безобидным в мелких числах. На дальнейший день за обедом ломтик мяса из поданного к столу блюда был сожжен перед спектроскопом – и жильцы пансиона увидели ясно-красную полосу. Хозяйка готовила еду из вчерашних остатков.

Обратите внимание!
Правда чистая вода проводит электрический ток дюже дрянно, она все-таки имеет измеримую электрическую проводимость, поясняемую тем, что вода немножко диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет
Множество электролитов – вещества враждебные, следственно при работе с ними будьте предельно осмотрительны и соблюдайте правила техники безопасности.

ЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых проводят электрический ток.

НЕЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых не проводят электрический ток.

Диссоциация – распад соединений на ионы.

Степень диссоциации – отношение числа продиссоциированных на ионы молекул к общему числу молекул в растворе.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы.

При написании уравнений диссоциации сильных электролитов ставят знак равенства.

К сильным электролитам относятся:

· Растворимые соли (смотри таблицу растворимости );

· Многие неорганические кислоты: HNO 3 , H 2 SO 4 ,HClO 3 , HClO 4 , HMnO 4 , HCl, HBr, HI (смотри кислоты-сильные электролиты в таблице растворимости );

· Основания щелочных (LiOH, NaOH,KOH) и щелочноземельных (Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2) металлов (смотри основания-сильные электролиты в таблице растворимости ).

СЛАБЫЕ ЭЛЕКТРОЛИТЫ в водных растворах лишь частично (обратимо) диссоциируют на ионы.

При написании уравнений диссоциации слабых электролитов ставят знак обратимости.

К слабым электролитам относятся:

· Почти все органические кислоты и вода (Н 2 О);

· Некоторые неорганические кислоты: H 2 S, H 3 PO 4 ,HClO 4 , H 2 CO 3 , HNO 2 , H 2 SiO 3 (смотри кислоты-слабые электролиты в таблице растворимости );

· Нерастворимые гидроксиды металлов (Mg(OH) 2 ,Fe(OH) 2 , Zn(OH) 2) (смотри основания- c лабые электролиты в таблице растворимости ).

На степень электролитической диссоциации влияет ряд факторов:

    природа растворителя и электролита : сильными электролитами являются вещества с ионными и ковалентными сильно-полярными связями; хорошей ионизирующей способностью, т.е. способностью вызывать диссоциацию веществ, обладают растворители с большой диэлектрической проницаемостью, молекулы которых полярны (например, вода);

    температура : поскольку диссоциация - процесс эндотермический, повышение температуры повышает значение α;

    концентрация : при разбавлении раствора степень диссоциации возрастает, а с увеличением концентрации - уменьшается;

    стадия процесса диссоциации : каждая последующая стадия менее эффективна, чем предыдущая, примерно в 1000–10 000 раз; например, для фосфорной кислоты α 1 > α 2 > α 3:

H3PО4⇄Н++H2PО−4 (первая стадия, α 1),

H2PО−4⇄Н++HPО2−4 (вторая стадия, α 2),

НPО2−4⇄Н++PО3−4 (третья стадия, α 3).

По этой причине в растворе данной кислоты концентрация ионов водорода наибольшая, а фосфат-ионов РО3−4 - наименьшая.

1. Растворимость и степень диссоциации вещества между собой не связаны. Например, слабым электролитом является хорошо (неограниченно) растворимая в воде уксусная кислота.

2. В растворе слабого электролита меньше других содержится тех ионов, которые образуются на последней стадии электролитической диссоциации

На степень электролитической диссоциации влияет также добавление других электролитов : например, степень диссоциации муравьиной кислоты

HCOOH ⇄ HCOO − + H +

уменьшается, если в раствор внести немного формиата натрия. Эта соль диссоциирует с образованием формиат-ионов HCOO − :

HCOONa → HCOO − + Na +

В результате в растворе концентрация ионов НСОО– повышается, а согласно принципу Ле Шателье, повышение концентрации формиат-ионов смещает равновесие процесса диссоциации муравьиной кислоты влево, т.е. степень диссоциации уменьшается.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь - константа диссоциации электролита, - концентрация, и - значения эквивалентной электропроводности при концентрации и при бесконечном разбавлении соответственно. Соотношение является следствием закона действующих масс и равенства

где - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 году и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Электролитическая диссоциация воды. Водородный показатель рН Вода представляет собой слабый амфотерный электролит: Н2О Н+ + ОН- или, более точно: 2Н2О= Н3О+ + ОН- Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л =55,55 моль/л). Тогда Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW: Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13. В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой: = = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды. На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями. Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода: рН = - lg Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила: рОН = - lg Легко показать, прологарифмировав ионное произведение воды, что рН + рОН = 14 Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

Диссоциация электролита количественно характеризуется степенью диссоциации. Степень диссоциации a это отношение числа молекул, диссоциированных на ионы N дисс. , к общему числу молекул растворенного электролита N :

a =

a – доля молекул электролита, распавшихся на ионы.

Степень диссоциации электролита зависит от многих факторов: природы электролита, природы растворителя, концентрации раствора, температуры.

По способности к диссоциации электролиты условно разделяют на сильные и слабые. Электролиты, которые в растворе существуют только в виде ионов, принято называть сильными . Электролиты, которые в растворенном состоянии находятся частично в виде молекул и частично в виде ионов, называются слабыми .

К сильным электролитам относятся почти все соли, некоторые кислоты: H 2 SO 4 , HNO 3 , HCl, HI, HClO 4 , гидроксиды щелочных и щелочно-земельных металлов (см. прил., табл. 6).

Процесс диссоциации сильных электролитов идет до конца:

HNO 3 = H + + NO 3 - , NaOH = Na + + OH - ,

и в уравнениях диссоциации ставятся знаки равенства.

Применительно к сильным электролитам понятие «степень диссоциации» носит условный характер. «Кажущаяся» степеньдиссоциации (a каж) ниже истинной (см. прил., табл. 6). С увеличением концентрации сильного электролита в растворе усиливается взаимодействие разноименно заряженных ионов. При достаточном приближении друг к другу они образуют ассоциаты. Ионы в них разделены слоями полярных молекул воды, окружающих каждый ион. Это сказывается на уменьшении электропроводности раствора, т.е. создается эффект неполной диссоциации.

Для учета этого эффекта введен коэффициент активности g, который уменьшается с возрастанием концентрации раствора, изменяясь в пределах от 0 до 1. Для количественного описания свойств растворов сильных электролитов пользуются величиной, называемой активностью (a) .

Под активностью иона понимают ту эффективную концентрацию его, соответственно которой он действует при химических реакциях.

Активность иона (a ) равна его молярной концентрации (С ), умноженной на коэффициент активности (g):

а = gС .

Использование активности вместо концентрации позволяет применять к растворам закономерности, установленные для идеальных растворов.

К слабым электролитам относятся некоторые минеральные (HNO 2 , H 2 SO 3 , H 2 S, H 2 SiO 3 , HCN, H 3 PO 4) и большинство органических кислот (СН 3 СООН, Н 2 С 2 О 4 и др.), гидроксид аммония NH 4 OH и все малорастворимые в воде основания, органические амины.

Диссоциация слабых электролитов обратима. В растворах слабых электролитов устанавливается равновесие между ионами и недиссоциированными молекулами. В соответствующих уравнениях диссоциации ставится знак обратимости («). Например, уравнение диссоциации слабой уксусной кислоты записывается так:


CH 3 COOH « CH 3 COO - + H + .

В растворе слабого бинарного электролита (КА ) устанавливается следующее равновесие, характеризуемое константой равновесия, называемой константой диссоциации К д:

КА « К + + А - ,

.

Если в 1 л раствора растворено С молей электролита КА и степень диссоциации равна a, значит, продиссоциировало молей электролита и образовалось каждого иона по молей. В недиссоциированном состоянии остается (С ) молей КА .

КА « К + + А - .

С – aС aС aС

Тогда константа диссоциации будет равна:

(6.1)

Так как константа диссоциации не зависит от концентрации, то выведенное соотношение выражает зависимость степени диссоциации слабого бинарного электролита от его концентрации. Из уравнения (6.1) видно, что уменьшение концентрации слабого электролита в растворе приводит к росту степени его диссоциации. Уравнение (6.1) выражает закон разбавления Оствальда .

Для очень слабых электролитов (при a <<1), уравнение Оствальда можно записать следующим образом:

К д a 2 C , или a » (6.2)

Константа диссоциации для каждого электролита постоянна при данной температуре, она не зависит от концентрации раствора и характеризует способность электролита распадаться на ионы. Чем выше К д, тем в большей степени электролит диссоциирует на ионы. Константы диссоциации слабых электролитов сведены в таблицы (см. прил., табл. 3).

Темы кодификатора ЕГЭ: Электролитическая диссоциация электролитов вводных растворах. Сильные и слабые электролиты.

— это вещества, растворы и расплавы которых проводят электрический ток.

Электрический ток — это упорядоченное движение заряженных частиц под действием электрического поля. Таким образом, в растворах или расплавах электролитов есть заряженные частицы. В растворах электролитов, как правило, электрическая проводимость обусловлена наличием ионов.

Ионы — это заряженные частицы (атомы или группы атомов). Разделяют положительно заряженные ионы (катионы ) и отрицательно заряженные ионы (анионы ).

Электролитическая диссоциация — это процесс распада электролита на ионы при его растворении или плавлении.

Разделяют вещества — электролиты и неэлектролиты . К неэлектролитам относятся вещества с прочной ковалентной неполярной связью (простые вещества), все оксиды (которые химически не взаимодействуют с водой), большинство органических веществ (кроме полярных соединений — карбоновых кислот, их солей, фенолов) — альдегиды, кетоны, углеводороды, углеводы.

К электролитам относят некоторые вещества с ковалентной полярной связью и вещества с ионной кристаллической решеткой.

В чем же суть процесса электролитической диссоциации?

Поместим в пробирку несколько кристаллов хлорида натрия и добавим воду. Через некоторое время кристаллы растворятся. Что произошло?
Хлорид натрия – вещество с ионной кристаллической решеткой. Кристалл NaCl состоит из ионов Na + и Cl — . В воде этот кристалл распадается на структурные единицы-ионы. При этом распадаются ионные химические связи и некоторые водородные связи между молекулами воды. Попавшие в воду ионы Na + и Cl — вступают во взаимодействие с молекулами воды. В случае хлорид-ионов можно говорить про электростатическое притяжение дипольных (полярных) молекул воды к аниону хлора, а в случае катионов натрия оно приближается по своей природе к донорно-акцепторному (когда электронная пара атома кислорода помещается на вакантные орбитали иона натрия). Окруженные молекулами воды ионы покрываются гидратной оболочкой . Диссоциация хлорида натрия описывается уравнением: NaCl = Na + + Cl — .

При растворении в воде соединений с ковалентной полярной связью, молекулы воды, окружив полярную молекулу, сначала растягивают связь в ней, увеличивая её полярность, затем разрывают её на ионы, которые гидратируются и равномерно распределяются в растворе. Например, соляная ксилота диссоциирует на ионы так: HCl = H + + Cl — .

При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.

Процесс электролитической диссоциации характеризуется величиной степени диссоциации молекул вещества:

Степень диссоциации — это отношение числа продиссоциировавших (распавшихся) молекул к общему числу молекул электролита. Т.е., какая доля молекул исходного вещества распадается в растворе или расплаве на ионы.

α=N продисс /N исх, где:

N продисс — это число продиссоциировавших молекул,

N исх — это исходное число молекул.

По степени диссоциации электролиты делят на делят на сильные и слабые .

Сильные электролиты (α≈1):

1. Все растворимые соли (в том числе соли органических кислот — ацетат калия CH 3 COOK, формиат натрия HCOONa и др.)

2. Сильные кислоты: HCl, HI, HBr, HNO 3 , H 2 SO 4 (по первой ступени), HClO 4 и др.;

3. Щелочи: NaOH, KOH, LiOH, RbOH, CsOH; Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 .

Сильные электролиты распадаются на ионы практически полностью в водных растворах, но только в . В растворах даже сильные электролиты могут распадаться только частично. Т.е. степень диссоциации сильных электролитов α приблизительно равна 1 только для ненасыщенных растворов веществ. В насыщенных или концентрированны растворах степень диссоциации сильных электролитов может быть меньше или равна 1: α≤1.

Слабые электролиты (α<1):

1. Слабые кислоты, в т.ч. органические;

2. Нерастворимые основания и гидроксид аммония NH 4 OH;

3. Нерастворимые и некоторые малорастворимые соли (в зависимости от растворимости).

Неэлектролиты:

1. Оксиды, не взаимодействующие с водой (взаимодействующие с водой оксиды при растворении в воде вступают в химическую реакцию с образованием гидроксидов);

2. Простые вещества;

3. Большинство органических веществ со слабополярными или неполярными связями (альдегиды, кетоны, углеводороды и т.д.).

Как диссоциируют вещества? По степени диссоциации различают сильные и слабые электролиты.

Сильные электролиты диссоциируют полностью (в насыщенных растворах), в одну ступень, все молекулы распадаются на ионы, практически необратимо. Обратите внимание — при диссоциации в растворе образуются только устойчивые ионы. Самые распространенные ионы можно найти в таблице растворимости — это ваша официальная шпаргалка на любом экзамене. Степень диссоциации сильных электролитов примерно равна 1. Например, при диссоциации фосфата натрия образуются ионы Na + и PO 4 3– :

Na 3 PO 4 → 3Na + +PO 4 3-

NH 4 Cr(SO 4) 2 → NH 4 + + Cr 3+ + 2SO 4 2–

Диссоциация слабых электролитов : многоосновных кислот и многокислотных оснований происходит ступенчато и обратимо . Т.е. при диссоциации слабых электролитов распадается на ионы только очень небольшая часть исходных частиц. Например, угольная кислота:

H 2 CO 3 ↔ H + + HCO 3 –

HCO 3 – ↔ H + + CO 3 2–

Гидроксид магния диссоциирует также в 2 ступени:

Mg(OH) 2 ⇄ Mg(OH) + OH –

Mg(OH) + ⇄ Mg 2+ + OH –

Кислые соли диссоциируют также ступенчато , сначала разрываются ионные связи, затем — ковалентные полярные. Например, гидрокабонат калия и гидроксохлорид магния:

KHCO 3 ⇄ K + + HCO 3 – (α=1)

HCO 3 – ⇄ H + + CO 3 2– (α < 1)

Mg(OH)Cl ⇄ MgOH + + Cl – (α=1)

MgOH + ⇄ Mg 2+ + OH – (α<< 1)

Степень диссоциации слабых электролитов намного меньше 1: α<<1.

Основные положения теории электролитической диссоциации, таким образом:

1. При растворении в воде электролиты диссоциируют (распадаются) на ионы.

2. Причина диссоциации электролиты в воде – это его гидратация, т.е. взаимодействие с молекулами воды и разрыв химической связи в нем.

3. Под действием внешнего электрического поля положительно заряженные ионы двигаюися к положительно заряженному электроду — катоду, их называют катионами. Отрицательно заряженные электроны двигаются к отрицательному электроду – аноду. Их называют анионами.

4. Электролитическая диссоциация происходит обратимо для слабых электролитов, и практически необратимо для сильных электролитов.

5. Электролиты могут в разной степени диссоциировать на ионы — в зависимости от внешних условий, концентрации и природы электролита.

6. Химические свойства ионов отличаются от свойств простых веществ. Химические свойства растворов электролитов определяются свойствами тех ионов, которые из него образуются при диссоциации.

Примеры .

1. При неполной диссоциации 1 моль соли общее количество положительных и отрицательных ионов в растворе составило 3,4 моль. Формула соли – а) K 2 S б) Ba(ClO 3) 2 в) NH 4 NO 3 г) Fe(NO 3) 3

Решение : для начала определим силу электролитов. Это легко можно сделать по таблице растворимости. Все соли, приведенные в ответах — растворимые, т.е. сильные электролиты. Далее, запишем уравнения электролитической диссоциации и по уравнению определим максимально число ионов в каждом растворе:

а) K 2 S ⇄ 2K + + S 2– , при полном распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не получится никак;

б) Ba(ClO 3) 2 ⇄ Ba 2+ + 2ClO 3 – , опять при распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не образуется никак;

в) NH 4 NO 3 ⇄ NH 4 + + NO 3 – , при распаде 1 моль нитрата аммония образуется 2 моль ионов максимально, больше 2 моль ионов не образуется никак;

г) Fe(NO 3) 3 ⇄ Fe 3+ + 3NO 3 – , при полном распаде 1 моль нитрата железа (III) образуется 4 моль ионов. Следовательно, при неполном распаде 1 моль нитрата железа возможно образование меньшего числа ионов (неполный распад возможен в насыщенном растворе соли). Следовательно, вариант 4 нам подходит.

Сильные электролиты при растворении в воде практически полностью диссоциируют на ионы независимо от их концентрации в растворе.

Поэтому в уравнениях диссоциации сильных электролитов ставят знак равенства (=).

К сильным электролитам относятся:

Растворимые соли;

Многие неорганические кислоты: HNO3, H2SO4, HCl, HBr, HI;

Основания, образованные щелочными металлами (LiOH, NaOH, KOH и т.д.) и щелочно-земельными металлами (Ca(OH)2, Sr(OH)2, Ba(OH)2).

Слабые электролиты в водных растворах лишь частично (обратимо) диссоциируют на ионы.

Поэтому в уравнениях диссоциации слабых электролитов ставят знак обратимости (⇄).

К слабым электролитам относятся:

Почти все органические кислоты и вода;

Некоторые неорганические кислоты: H2S, H3PO4, H2CO3, HNO2, H2SiO3 и др.;

Нерастворимые гидроксиды металлов: Mg(OH)2, Fe(OH)2, Zn(OH)2 и др.

Ионные уравнения реакций

Ионные уравнения реакций
Химические реакции в растворах электролитов (кислот, оснований и солей) протекают при участии ионов. Конечный раствор может остаться прозрачным (продукты хорошо растворимы в воде) , но один из продуктом окажется слабым электролитом; в других случаях будет наблюдаться выпадение осадка или выделение газа.

Для реакций в растворах при участии ионов составляют не только молекулярное уравнение, но также полное ионное и краткое ионное.
В ионных уравнениях по предложению французского химика К. -Л. Бертолле (1801 г.) все сильные хорошо растворимые электролиты записывают в виде формул ионов, а осадки, газы и слабые электролиты - в виде молекулярных формул. Образование осадков отмечают знаком "стрелка вниз" (↓), образование газов - знаком "стрелка вверх" (). Пример записи уравнения реакции по правилу Бертолле:

а) молекулярное уравнение
Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O
б) полное ионное уравнение
2Na+ + CO32− + 2H+ + SO42− = 2Na+ + SO42− + CO2 + H2O
(CO2 - газ, H2O - слабый электролит)
в) краткое ионное уравнение
CO32− + 2H+ = CO2 + H2O

Обычно при записи ограничиваются кратким ионным уравнением, причем твердые вещества-реагенты обозначают индексом (т) , газобразные реагенты - индексом (г) . Примеры:

1) Cu(OH)2(т) + 2HNO3 = Cu(NO3)2 + 2H2O
Cu(OH)2(т) + 2H+ = Cu2+ + 2H2O
Cu(OH)2 практически нерастворим в воде
2) BaS + H2SO4 = BaSO4↓ + H2S
Ba2+ + S2− + 2H+ + SO42− = BaSO4↓ + H2S
(полное и краткое ионное уравнения совпадают)
3) CaCO3(т) + CO2(г) + H2O = Ca(HCO3)2
CaCO3(т) + CO2(г) + H2O = Ca2+ + 2HCO3−
(большинство кислых солей хорошо растворимы в воде) .


Если в реакции не участвуют сильные электролиты, ионный вид уравнения отсутствует:

Mg(OH)2(т) + 2HF(р) = MgF2↓ + 2H2O

БИЛЕТ №23

Гидролиз солей

Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.

Гидролиз, дословно, - это разложение водой. Давая такое определение реакции гидролиза солей, мы подчеркиваем, что соли в растворе находятся в виде ионов, и что движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Гидролиз происходит лишь в тех случаях, когда ионы, образующиеся в результате электролитической диссоциации соли - катион, анион, или оба вместе, - способны образовывать с ионами воды слабодиссоциирующие соединения, а это, в свою очередь, происходит тогда, когда катион - сильно поляризующий (катион слабого основания) , а анион - легко поляризуется (анион слабой кислоты). При этом изменяется рН среды. Если же катион образует сильное основание, а анион - сильную кислоту, то они гидролизу не подвергаются.

1.Гидролиз соли слабого основания и сильной кислоты проходит по катиону, при этом может образоваться слабое основание или основная соль и рН раствора уменьшится

2.Гидролиз соли слабой кислоты и сильного основания проходит по аниону, при этом может образоваться слабая кислота или кислая соль и рН раствора увеличится

3.Гидролиз соли слабого основания и слабой кислоты обычно проходит нацело с образованием слабой кислоты и слабого основания; рН раствора при этом незначительно отличается от 7 и определяется относительной силой кислоты и основания

4.Гидролиз соли сильного основания и сильной кислоты не протекает

Вопрос 24 Классификация оксидов

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Солеобразующие оксиды Например,

CuO + 2HCl → CuCl 2 + H 2 O.

CuO + SO 3 → CuSO 4 .

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.