Что такое германий и его свойства. Характеристика химического элемента германия


На момент создания периодической таблицы германий еще открыт не был, но Менделеев предсказал его существование. А спустя 15 лет после доклада в одной из шахт Фрайберга обнаружили неизвестный минерал, в 1886 году из него выделили новый элемент. Заслуга принадлежит немецкому химику Винклеру, давшему элементу имя своей родины. Даже при множестве полезных свойств германия, среди которых нашлось место и лечебным, использовать его начали только в начале Второй мировой войны, и то не очень активно. Поэтому даже сейчас нельзя сказать, что элемент хорошо изучен, но некоторые его способности уже доказаны и успешно применяются.

Лечебные свойства германия

В чистом виде элемент не встречается, выделение его трудоемко, поэтому при первой возможности его заменяли более дешевыми компонентами. Сначала его использовали в диодах и транзисторах, но кремний оказался более удобным и доступным, поэтому изучение химических свойств германия продолжилось. Сейчас он входит в состав термоэлектрических сплавов, применяется в СВЧ-устройствах, инфракрасной технике.

Медицина тоже заинтересовалась новым элементом, но значимый результат удалось получить только в конце 70-х годов прошлого века. Японским специалистам удалось открыть лечебные свойства германия и наметить пути их применения. После испытаний на животных и клинических наблюдений влияния на человека выяснилось, что элемент способен:

  • стимулировать ;
  • доставлять кислород к тканям;
  • бороться с опухолями;
  • увеличивать проводимость нервных импульсов.

Сложность использования состоит в токсичности германия в больших дозах, поэтому требовался препарат, способный оказывать позитивное влияние на определенные процессы в организме с минимальным вредом. Первым стал «Германий-132», который помогает улучшать иммунный статус человека, помогает избежать недостатка кислорода в случае падения уровня гемоглобина. Также опыты показали влияние элемента на производство интерферонов, которые противостоят быстро делящимся (опухолевым) клеткам. Польза наблюдается только при введении внутрь, ношение ювелирных изделий с германием никакого эффекта не даст.

Недостаток германия снижает природные способности организма противостоять внешним воздействиям, что приводит к различным нарушениям. Рекомендуемая суточная доза составляет 0,8-1,5 мг. Получить необходимый элемент можно при регулярном употреблении молока, лососины, грибов, чеснока и бобов.

Супоненко А. Н. к.х.н.,

Генеральный директор ООО «Гермацентр»

Органический германий. История открытия.

Химик Винклер, открыв в 1886 году в серебряной руде новый элемент таблицы Менделеева германий, и не подозревал, какое внимание ученых-медиков привлечет этот элемент в ХХ веке.

Для медицинских нужд наиболее широко германий первыми начали применять в Японии. Испытания различных германийорганических соединений в опытах на животных и в клинических испытаниях на людях показали, что они в разной степени положительно влияют на организм человека. Прорыв наступил в 1967 г., когда доктор К. Асаи обнаружил, что органический германий, способ синтеза которого был ранее разработан в нашей стране, обладает широким спектром биологического действия.

Среди биологических свойств органического германия можно отметить его способности:

· обеспечивать перенос кислорода в тканях организма;

· повышать иммунный статус организма;

· проявлять противоопухолевую активность

Так японскими учеными был создан первый препарат с содержанием органического германия «Германий – 132», использующийся для коррекции иммунного статуса при различных заболеваниях человека.

В России биологическое действие германия изучалось давно, но создание первого российского препарата «Гермавит» стало возможным только в 2000 г., когда финансы в развитие науки и, в частности, медицины стали вкладывать российские бизнесмены, понимающие, что здоровье нации требует самого пристального внимания, а его укрепление является важнейшей социальной задачей нашего времени.

Где содержится германий.

Следует отметить, что процессе геохимической эволюции земной коры произошло вымывание значительного количества германия с большей части поверхности суши в океаны, поэтому в настоящее время количество этого микроэлемента, содержащегося в почве – крайне незначительно.

Среди немногих растений, способных абсорбировать германий и его соединения из почвы, лидером является женьшень (до 0.2 %), широко применяемый в тибетской медицине. Германий также содержат в себе чеснок, камфара и алоэ, традиционно используемые для профилактики и лечения различных заболеваний человека. В растительном сырье органический германий находится в форме полуоксид карбоксиэтила. В настоящее время синтезированы органические соединения германия – сесквиоксаны с пиримидиновым фрагментом. Это соединение близко по структуре к природному соединению германия, содержащемуся в биомассе корня женьшеня.

Германий относится к редким микроэлементам, присутствует во многих пищевых продуктах, но в микроскопических дозах. Рекомендуемая суточная доза германия в органической форме – 8 - 10 мг.

Оценка количества германия, поступающего с пищей, проведенная путем анализа 125 видов пищевых продуктов, показала, что ежедневно с пищей поступает 1.5 мг германия. В 1 г сырых продуктов его обычно содержится 0.1 – 1.0 мкг. Этот микроэлемент содержится в томатном соке, бобах, молоке, лососине. Однако для обеспечения суточной потребности организма в германии необходимо выпивать, например, до 10 л томатного сока в день или съедать до 5 кг лососины, что нереально по физическим возможностям организма человека. Кроме того цены на данные продукты делают невозможным регулярное употребление для большей части населения нашей страны.

Территории нашей страны слишком обширна и на 95 % ее территории недостаток германия составляет от 80 до 90 % от необходимой нормы, поэтому возник вопрос о создании германийсодержащего препарата.

Распределение органического германия в организме и механизмы его воздействия на организм человека.

В экспериментах, определяющих распределение органического германия в организме через 1.5 часа после его перорального введения, были получены следующие результаты: большое количество органического германия содержится в желудке, тонком кишечнике, костном мозге, селезенке и крови. Причем высокое его содержание в желудке и кишечнике показывает, что процесс его всасывания в кровь имеет пролонгированное действие.

Высокое содержание органического германия в крови позволило выдвинуть доктору Асаи следующую теорию механизма его действия в организме человека. Предполагаются, что в крови органический германий ведет себя аналогично гемоглобину, также несущему в себе отрицательный заряд и подобно гемоглобину участвует в процессе переноса кислорода в тканях организма. Тем самым предупреждается развитие кислородной недостаточности (гипоксии) на тканевом уровне. Органический германий предотвращает развитие так называемой кровяной гипоксии, возникающей при уменьшении количества гемоглобина, способного присоединить кислород (уменьшении кислородной ёмкости крови), и развивающейся при кровопотерях, отравлении окисью углерода, при радиационных воздействиях. Наиболее чувствительны к кислородной недостаточности центральная нервная система, мышца сердца, ткани почек, печени.

В результате опытов было также установлено, что органический германий способствует индукции гамма интерферонов, которые подавляют процессы размножения быстро делящихся клеток, активируют специфические клетки (Т-киллеры). Основными направлениями действия интерферонов на уровне организма является антивирусная и противоопухолевая защита, иммуномодулирующие и радиозащитные функции лимфатической системы.

В процессе изучения патологических тканей и тканей с первичными признаками заболеваний было установлено, что они всегда характеризуются недостатком кислорода и присутствием положительно заряженных радикалов водорода Н+. Ионы Н+ оказывают крайне негативное воздействие на клетки организма человека, вплоть до их гибели. Ионы кислорода, обладая способностью объединяться с ионами водорода, позволяют выборочно и локально компенсировать повреждения клеток и тканей, которые наносят им ионы водорода. Действие германия на ионы водорода обусловлено его органической формой – формой сесквиоксида.

Несвязанный водород очень активен, поэтому легко взаимодействует с атомами кислорода, находящимися в германиевых сесквиоксидах. Гарантией нормального функционирования всех систем организма должна быть беспрепятственная транспортировка кислорода в тканях. Органический германий обладает ярко выраженной способностью доставлять кислород в любую точку организма и обеспечивать его взаимодействие с ионами водорода. Таким образом, в основе действия органического германия при взаимодействии его с ионами Н+ лежит реакция дегидрации (отщепление водорода от органических соединений), а кислород, принимающий участие в этой реакции, можно сравнить с «пылесосом», вычищающим организм от положительно заряженных ионов водорода, органический германий – со своего рода «внутренней люстрой Чижевского».

Германий (лат. Germanium), Ge, химический элемент IV группы периодической системы Менделеева; порядковый номер 32, атомная масса 72,59; твердое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Германия предсказал в 1871 году Д. И. Менделеев и назвал этот неизвестный еще элемент экасилицием из-за близости свойств его с кремнием. В 1886 году немецкий химик К. Винклер обнаружил в минерале аргиродите новый элемент, который назвал Германием в честь своей страны; Германий оказался вполне тождествен экасилицию. До второй половины 20 века практическое применение Германия оставалось весьма ограниченным. Промышленное производство Германия возникло в связи с развитием полупроводниковой электроники.

Общее содержание Германий в земной коре 7·10 -4 % по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu 2 (Cu, Fe, Ge, Zn) 2 (S, As) 4 , аргиродит Ag 8 GeS 6 , конфильдит Ag 8 (Sn, Ge)S 6 и другие. Основная масса Германия рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых оксидных минералах (хромите, магнетите, рутиле и других), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

Физические свойства Германия. Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Å. Плотность твердого Германий 5,327 г/см 3 (25°С); жидкого 5,557 (1000°С); t пл 937,5°С; t кип около 2700°С; коэффициент теплопроводности ~60 Вт/(м·К),или 0,14 кал/(см·сек·град) при 25°С. Даже весьма чистый Германий хрупок при обычной температуре, но выше 550°С поддается пластической деформации. Твердость Германия по минералогической шкале 6-6,5; коэффициент сжимаемости (в интервале давлений 0-120 Гн/м 2 , или 0-12000 кгс/мм 2) 1,4·10 -7 м 2 /мн (1,4·10 -6 см 2 /кгс); поверхностное натяжение 0,6 н/м (600 дин/см). Германий - типичный полупроводник с шириной запрещенной зоны 1,104·10 -19 дж или 0,69 эв (25°С); удельное электросопротивление Германия высокой чистоты 0,60 ом·м (60 ом·см) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см 2 /в·сек (25°С) (при содержании примесей менее 10 -8 %). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.

Химические свойства Германия. В химические соединениях Германий обычно проявляет валентности 2 и 4, причем более стабильны соединения 4-валентного Германия. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500-700°С Германий окисляется до оксидов GeO и GeO 2 . Оксид Германия (IV) - белый порошок с t пл 1116°C; растворимость в воде 4,3 г/л (20°С). По химическиv свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO 3 ·nH 2 O), выделяемого при гидролизе тетрахлорида GeCl 4 . Сплавлением GeO 2 с других оксидами могут быть получены производные германиевой кислоты - германаты металлов (Li 2 GeO 3 , Na 2 GeO 3 и другие) - твердые вещества с высокими температурами плавления.

При взаимодействии Германия с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700-800°С в присутствии СО). Одно из наиболее важных соединений Германия тетрахлорид GeCl 4 - бесцветная жидкость; t пл -49,5°С; t кип 83,1°С; плотность 1,84 г/см 3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированного оксида (IV). Получается хлорированием металлического Германия или взаимодействием GeO 2 с концентрированной НСl. Известны также дигалогениды Германия общей формулы GeX 2 , монохлорид GeCl, гексахлордигерман Ge 2 Cl 6 и оксихлориды Германия (например, СеОСl 2).

Сера энергично взаимодействует с Германием при 900-1000°С с образованием дисульфида GeS 2 - белого твердого вещества, t пл 825°С. Описаны также моносульфид GeS и аналогичные соединения Германия с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Германием при 1000-1100°С с образованием гермина (GeH) Х - малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда Ge n H 2n+2 вплоть до Ge 9 H 20 . Известен также гермилен состава GeH 2 . С азотом Германий непосредственно не реагирует, однако существует нитрид Gе 3 N 4 , получающийся при действии аммиака на Германий при 700-800°С. С углеродом Германий не взаимодействует. Германий образует соединения со многими металлами - германиды.

Известны многочисленные комплексные соединения Германия, которые приобретают все большее значение как в аналитической химии Германия, так и в процессах его получения. Германий образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и другими). Получены гетерополикислоты Германия. Так же, как и для других элементов IV группы, для Германия характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (С 2 Н 5) 4 Ge 3 .

Получение Германия. В промышленного практике Германий получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001-0,1% Германия. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10% Германия). Извлечение Германия из концентрата обычно включает следующие стадии: 1) хлорирование концентрата соляной кислотой, смесью ее с хлором в водной среде или других хлорирующими агентами с получением технического GeCl 4 . Для очистки GеСl 4 применяют ректификацию и экстракцию примесей концентрированной НСl. 2) Гидролиз GeCl 4 и прокаливание продуктов гидролиза до получения GeO 2 . 3) Восстановление GeO 2 водородом или аммиаком до металла. Для выделения очень чистого Германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Германий получают обычно зонной плавкой или методом Чохральского.

Применение Германия. Германий - один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. Важной областью применения Германия является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мкм. Перспективны для практическое использования многие сплавы, в состав которых входят Германий, стекла на основе GeO 2 и другие соединения Германия.

Назван в честь Германии. Ученый из этой страны открыл и имел право именовать его, как захочет. Так в попал германий .

Однако, посчастливилось не Менделееву, а Клеменсу Винклеру. Ему поручили изучить аргиродит. Новый минерал, состоящий, в основном, из , нашли на прииске Химмельфюрст.

Винклер определил 93% состава камня и зашел в тупик с оставшимися 7%. Напрашивался вывод, что в них входит неизвестный элемент.

Более тщательный анализ принес плоды, — был открыт германий . Это металл. Чем он пригодился человечеству? Об этом, и не только, расскажем далее.

Свойства германия

Германий – 32 элемент таблицы Менделеева . Получается, металл входит в 4-ю группу. Номер соответствует валентности элементов.

То есть, германий склонен образовывать 4 химических связи. Это делает элемент, открытый Винклером, похожим на .

Отсюда и желание Менделеева назвать еще неоткрытый элемент экосилицием, обозначаемым, как Si. Дмитрий Ивановичь заранее просчитал свойства 32-го металла.

На кремний германий похож химическими свойствами. С кислотами реагирует только при нагревании. Со щелочами «общается» в присутствии окислителей.

Устойчив к парам воды. Не вступает в реакции с водородом, углеродом, . Загорается германий при температуре в 700-от градусов Цельсия. Реакция сопровождается образованием диоксида германия.

32-ой элемент легко взаимодействует с галогенами. Это солеобразующие вещества из 17 группы таблицы.

Дабы не запутаться, укажем, что ориентируемся на новый стандарт. В старом, это 7-я группа таблицы Менделеева.

Какой бы ни была таблица, металлы в ней располагаются слева от ступенчатой диагональной линии. 32-ой элемент – исключение.

Еще одно исключение – . С ней тоже возможна реакция. Сурьма осаждается на подложке.

Активное взаимодействие обеспеченно и с . Как большинство металлов, германий способен гореть в ее парах.

Внешне элемент германий , серовато-белый, с выраженным металлическим блеском.

При рассмотрении внутреннего строения, металл имеет кубическую структуру. Она отражает расположение атомов в элементарных ячейках.

Они имеют форму кубов. Восемь атомов располагаются в вершинах. Строение близко к решетке .

У 32-го элемента 5 стабильных изотопов. Их наличие – свойство всех элементов подгруппы германия.

Они четные, что и обуславливает присутствие стабильных изотопов. У , к примеру, их 10.

Плотность германия составляет 5,3-5,5 граммов на кубический сантиметр. Первый показатель характерен для состояния, второй – для жидкого металла.

В размягченном виде он не только более плотный, но и пластичный. Хрупкое при комнатной температуре вещество становится при 550-ти градусах. Таковы особенности германия.

Твердость металла при комнатной температуре составляет около 6 баллов по .

В таком состоянии 32-ой элемент является типичным полупроводником. Но, свойство становится «ярче» при повышении температуры. Просто проводники, для сравнения, теряют свои свойства при нагреве.

Германий проводит ток не только в стандартном виде, но и в растворах.

По полупроводниковым свойствам 32-ой элемент, так же, близок кремнию и столь же распространен.

Однако, сферы применения веществ разнятся. Кремний – полупроводник, используемый в солнечных батареях, в том числе, и тонкопленочного типа.

Элемент нужен, так же, для фотоэлементов. Теперь, рассмотрим, где пригождается германий.

Применение германия

Германий применяют в гаммо-спектроскопии. Ее приборы позволяют, к примеру, изучить состав добавок в смешанных окислах катализаторов.

В прошлом, германий добавляли в диоды и транзисторы. В фотоэлементах свойства полупроводника тоже пригождаются.

Но, если кремний добавляют в стандартные модели, то германий – в высокоэффективные, нового поколения.

Главное, не использовать германий при температуре близкой к абсолютному нулю. В таких условиях металл теряет способность передавать напряжение.

Чтобы германий был проводником, примесей в нем должно быть не более 10%. Идеален ультрачистый химический элемент.

Германий делают таким методом зонной плавки. Она основана на различной растворимости сторонних элементов в жидкой и фазах.

Формула германия позволяет применять его и в деле. Здесь речь уже не о полупроводниковых свойствах элемента, а о его способности придать твердость .

По этой же причине, германий нашел применение в зубопротезировании. Хотя, коронки отживают свой век, небольшой спрос на них, все еще, есть.

Если добавить к германию и еще и кремний с алюминием, получаются припои.

Их температура плавления всегда ниже, чем у соединяемых металлов. Так что, можно делать сложные, дизайнерские конструкции.

Даже интернет без германия был бы невозможен. 32-ой элемент присутствует в оптоволокне. В его сердцевине находится кварц с примесью героя .

А его двуокись увеличивает отражательные способности оптоволокна. Учитывая спрос на него, , электронику, германий нужен промышленникам в больших объемах. Каких именно, и как их обеспечивают, изучим ниже.

Добыча германия

Германий довольно распространен. В земной коре 32-го элемента, к примеру, больше, чем , сурьмы, или .

Разведанные запасы – около 1 000 тонн. Почти половина из них сокрыта в недрах США. Еще 410 тонн – достояние .

Так что, остальным странам, в основном, приходиться закупать сырье. сотрудничает с Поднебесной. Это обосновано и с политической точки зрения, и с позиции экономии.

Свойства элемента германий , связанные с его геохимическим родством с широко распространенными веществами, не позволяют металлу образовывать собственные минералы.

Обычно, металл внедряется в решетку уже существующих . Много места гость, естественно, не займет.

Поэтому, приходиться извлекать германий по крупицам. В можно найти несколько кило на тонну породы.

В энаргитах на 1000 килограммов приходиться не больше 5 кило германия. В пираргирите в 2 раза больше.

В тонне сульванита 32-го элемента содержится не больше 1 килограмма. Чаще всего, германий извлекают в качестве побочного продукта из руд других металлов, к примеру, , или цветных, таких как хромит, магнитит, рутит.

Годовое производство германия колеблется в пределах 100-120 тонн, в зависимости от спроса.

В основном, закупается монокристаллическая форма вещества. Именно такая нужна для производства спектрометров, оптоволокна, драгоценных . Узнаем расценки.

Цена германия

Монокристаллический германий, в основном, закупают тоннами. Для больших производств это выгодно.

1 000 килограммов 32-го элемента стоит около 100 000 рублей. Можно найти предложения за 75 000 – 85 000.

Если брать поликристаллический, то есть, с агрегатами меньшего размера и повышенной прочностью, можно отдать в 2,5 раза больше всего за кило сырья.

Стандартны длинной не меньше 28-ми сантиметров. Блоки защищают пленкой, поскольку на воздухе они тускнеют. Поликристаллический германий – «почва» для выращивания монокристаллов.

Мини – реферат

«Элемент Германий»

Цель:

    Дать характеристику элемента Ge

    Дать описание свойств элемента Ge

    Рассказать о применение и использовании данного элемента

    История элемента ……….………………………………….……. 1

    Свойства элемента …..……………………………………..…… 2

    Применение ……………….….…………………………………….. 3

    Опасность для здоровья ………..………………………....… 4

    Источники ………………………….…………………….…………… 5

Из истории элемента..

Г ерманий (лат. Germanium) - химический элемент IV группы, главной подгруппы периодической системы Д.И. Менделеева, обозначается символом Ge, относится к семейству металлов, порядковый номер 32, атомная масса 72,59. Представляет собой твердое вещество серо - белого цвета с металлическим блеском.

Существование и свойства Германия предсказал в 1871 году Менделеев и назвал этот неизвестный еще элемент – «Экасилицием» из-за близости свойств его с кремнием.

В 1886 году немецкий химик К. Винклер, исследуя минерал, нашел, что в нём присутствует какой-то неизвестный элемент, не обнаруживаемый анализом. После упорной работы он открыл соли нового элемента и выделил некоторое количество самого элемента в чистом виде. В первом сообщении об открытии Винклер высказал предположение, что новый элемент является аналогом сурьмы и мышьяка. Винклер предполагал назвать элемент нептунием (Neptunium), но это имя уже было дано одному ложно открытому элементу. Винклер переименовал открытый им элемент на германий (Germanium) в честь своего отечества. И даже Менделеев в письме к Винклеру решительно поддержал название элемента.

Но до второй половины 20 века практическое применение Германия оставалось весьма ограниченным. Промышленное производство этого элемента возникло в связи с развитием полупроводниковой электроники.

Свойства элемента Ge

Для медицинских нужд наиболее широко германий первыми начали применять в Японии. Испытания различных германийорганических соединений в опытах на животных и в клинических испытаниях на людях показали, что они в разной степени положительно влияют на организм человека. Прорыв наступил в 1967 г., когда доктор К. Асаи обнаружил, что органический германий обладает широким спектром биологического действия.

Свойства:

    Переносит кислород в тканях организма - германий в крови ведет себя аналогично гемоглобину. Он участвует в процессе переноса кислорода к тканям организма, что гарантирует нормальное функционирование всех систем организма.

    стимулирует иммунитет - германий в виде органических соединений способствует продукции гамма-интерферонов, которые подавляют процессы размножения быстро делящихся микробных клеток, и активирует специфические клетки иммунитета (Т-клетки)

    противоопухолевое - германий задерживает развитие злокачественных новообразований и препятствует появлению метастазов, а также обладает защитными свойствами против радиоактивного облучения.

    биоцидное (противогрибковое, противовирусное, антибактериальное) - органические соединения германия стимулируют продукцию интерферона - защитного белка, вырабатываемого организмом в ответ на внедрение чужеродных тел.

Применение и использование элемента Германий в жизни

В промышленной практике Германий получают преимущественно из побочных продуктов переработки руд цветных металлов. Различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10% Германия). Для выделения очень чистого Германия, используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Германий получают обычно зонной плавкой.

Это один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Германий применяется также в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. Важной областью применения элемента является инфракрасная техника, в частности производство детекторов инфракрасного излучения. Перспективны для практического использования многие сплавы, в состав которых входят Германий. Например, стекла на основе GeO 2 и другие соединения Ge. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. А азотной кислотой окисляется медленно.

Сплавы германия, обладающие высокой твердостью и прочностью, используют в ювелирной и зубопротезной технике для прецизионных отливок. Германий присутствует в природе только в связанном состоянии и никогда в свободном. Самые обычные германийсодержащие минералы - это аргиродит и германит Крупные запасы германиевых минералов редки, но сам элемент широко встречается в составе других минералов, особенно в сульфидах (чаще всего в сульфидах цинка и силикатах). Небольшие количества также обнаружены в разных типах каменного угля.

Мировое производство Германия составляет 65 кг в год.

Опасность для здоровья

Профессиональные проблемы со здоровьем могут вызываться рассеиванием пыли в процессе загрузки германиевого концентрата, измельчения и загрузки диоксида для выделения металлического германия и загрузки порошкообразного германия для переплавки в бруски. Другие источники вреда для здоровья - тепловое излучение от трубчатых печей и в процессе переплавки порошкообразного германия в бруски, а также образование угарного газа.

Абсорбированный германий быстро выводится из организма, в основном с мочой. Информации о токсичности неорганических соединений германия для человека мало. Тетрахлорид германия раздражает кожу. В клинических испытаниях и других долговременных случаях перорального приема кумулятивных доз, достигающих 16 г спирогермания - германий-органического антиопухолевого препарата, - или других германиевых соединений, была отмечена нейротоксическая и нефротоксическая активность. Таким дозам обычно не подвергаются в условиях производства. Эксперименты на животных с целью определения воздействия германия и его соединений на организм показали, что пыль металлического германия и диоксида германия при вдыхании в высоких концентрациях приводит к общему ухудшению здоровья (ограничение прироста веса). В легких животных были обнаружены морфологические изменения, аналогичные пролиферативным реакциям, таким как утолщение альвеолярных разделов и гиперплазия лимфатических сосудов вокруг бронхов и кровеносных сосудов. Диоксид германия не раздражает кожу, но при контакте с влажной слизистой оболочкой глаза он образует германиевую кислоту, которая действует как глазной раздражитель. Продолжительные внутрибрюшинные инъекции в дозах 10 мг/кг приводят к изменениям в периферической крови.

Наиболее вредные соединения германия - это гидрид германия и хлорид германия. Гидрид может вызывать острое отравление. Морфологические обследования органов животных, погибших при острой фазе, выявили нарушения в системе кровообращения и дегенеративные клеточные изменения в паренхиматозных органах. Таким образом, гидрид является многоцелевым ядом, поражающим нервную систему и систему периферийного кровообращения.

Тетрахлорид германия - сильный раздражитель дыхательной системы, кожи и глаз. Пороговая концентрация – 13мг/м 3 . В этой концентрации он подавляет у экспериментальных животных легочный ответ на клеточном уровне. В больших концентрациях он приводит к раздражению верхних дыхательных путей и конъюнктивиту, а также к изменениям в частоте и ритме дыхания. У животных, переживших острое отравление, развились катарально-десквамативный бронхит и интерстициальная пневмония несколькими днями позже. Хлорид германия также обладает общим токсическим эффектом. Морфологические изменения наблюдались в печени, почках и других органах животных.

Источники всей представленной информации