Водяные пары в атмосфере. Вода и водяной пар Водяной пар постоянно находиться в


Испарение — это испарившееся и поступившее в воздух количество водяного пара. Скорость испарения зависит от многих причин, но главным образом от температуры воздуха и ветра. Понятно, что чем выше температура, тем больше испарение. Но , постоянно перемещая насыщенный водяными парами воздух, приносит в данное место новые и новые объемы сухого воздуха. Даже слабый ветер скоростью 2-3 м/с увеличивает испарение в три раза. На испарение влияют также характер , растительный покров и т.д.

Однако из-за недостатка влаги в данной местности испарение бывает значительно меньше, чем могло бы быть при данных условиях. Количество воды, которое могло бы испариться при данных условиях, называется испаряемостью. Иначе говоря, испаряемость — это потенциально возможное испарение в данной местности, которое чаще всего определяется с помощью испарителя или по показателям испарения с открытой водной поверхности крупного естественного (пресноводного) водоема или с избыточно увлажненной почвы.

Испаряемость, как и испарение, выражается в миллиметрах слоя испарившейся воды (мм); за конкретный период — мм/год и т.д.

На земной поверхности постоянно происходят два противоположно направленных процесса: местности осадками и осушение ее испарением. Но степень увлажнения территории обусловливается соотношением осадков и испарения. Увлажнение территории характеризуется коэффициентом увлажнения (К), под которым понимается отношение суммы осадков (Q) к испаряемости (И): К = (если К выражается в долях единицы — дробью) и К = 100% (если в процентах). Например, в европейской осадков выпадает 300 мм, а испаряемость только 200 мм, т.е. осадки превосходят испаряемость в 1,5 раза; коэффициент увлажнения равен 1,5, или 150%.

Увлажнение бывает избыточным, когда К > 1, или > 100%; нормальным, когда К = 1, или 100%; недостаточным, когда К < 1, или < 100%. По степени увлажнения выделяют влажные (гумидные) и сухие (аридные) территории. Коэффициент увлажнения характеризует условия , развитие и другое. он равен примерно 1,0-1,5, в 0,6-1,0, в 0,3-0,6, 0,1-0,3, пустынях менее 0,1.

Абсолютной влажностью (а) называется фактическое количество водяных паров в воздухе в данный момент, измеряемое в г/м 3 . Отношение абсолютной влажности к максимальной, выраженное в процентах, называется относительной влажностью (f), т.е. f =100%. Воздух, имеющий максимальную влажность, называется насыщенным. В отличие от него ненасыщенный воздух еще обладает способностью поглощать водяные пары. Однако при нагревании насыщенный воздух становится ненасыщенным, а в случае охлаждения — перенасыщенным. В последнем случае начинается . Конденсация — это сгущение избыточных водяных паров и переход их в жидкое состояние, образование мельчайших капелек воды. Как насыщенный, так и ненасыщенный воздух может стать перенасыщенным во время поднятия , так как при этом она сильно охлаждается. Охлаждение возможно также при выхолаживании почвы в данном месте и при проникновении теплого воздуха в холодную местность.

Конденсация может происходить не только в воздухе, но и на земной поверхности, на ралличных предметах. В этом случае в зависимости от условий образуются роса, иней, туман, гололед. Роса и иней образуются при ясной и тихой ночью, преимущественно в предутренние часы, когда поверхность Земли и ее объекты выхолаживаются. Тогда на их поверхности конденсируется влага из воздуха. При этом при отрицательных температурах образуется иней, при положительных — роса. В случае, если на теплую поверхность приходит холодный воздух или теплый воздух резко охлаждается, может образоваться туман. Он состоит из мельчайших капелек, или кристалликов, как бы взвешенных в воздухе. В сильно загрязненном воздухе образуется туман или дымка с примесью дыма — смог. При выпадении переохлажденных капелек дождя или на охлажденную ниже 0°С поверхность и при от 0 до -3°С образуется слой плотного льда, нарастающего на поверхности земли и на предметах, преимущественно с наветренной стороны, — гололед. Это происходит от намерзания переохлажденных капель дождя, тумана, или мороси. Корка льда может достичь толщины нескольких сантиметров и превратиться в настоящее бедствие: она становится опасной для пешеходов, транспортных средств, обламывает сучья деревьев, обрывает провода и т.д.

Иные причины обусловливают явление, которое называется . Гололедица возникает как правило, после оттепели или дождя в результате наступления похолодания, когда температура резко опускается ниже 0°С. Происходит замерзание мокрого снега, дождя или мороси. Гололедица образуется и тогда, когда эти жидкие осадки выпадают на сильно переохлажденную поверхность земли, что также обусловливает их замерзание. Таким образом гололедица — это лед на земной поверхности, образовавшийся в результате замерзания мокрого снега или жидких осадков.

Облачный покров задерживает , идущую к земной поверхности, отражает и рассеивает ее. Одновременно облака задерживают тепловое излучение земной поверхности в атмосферу. Поэтому влияние облачности на очень велико.

В данном материале мы рассмотрим Водяной пар , который является газообразным состоянием воды.

Газообразное состояние относится к трем основным агрегатным состояниям воды, встречающихся в природе в естественных условиях. Детально этот вопрос рассмотрен в материале Агрегатные состояния воды .

Водяной пар

Чистый водяной пар не имеет ни цвета, ни вкуса. Наибольшее скопление пара наблюдается в тропосфере.

Водяно́й пар — вода, содержащаяся в атмосфере в газообразном состоянии. Количество водяного пара в воздухе сильно меняется; наибольшее его содержание – до 4 %. Водяной пар невидим; то, что называют паром в быту (пар от дыхания на холодном воздухе, пар от кипения воды и т. п.), – это результат конденсации водяного пара, как и туман. Количество водяного пара определяет важнейшую для состояния атмосферы характеристику – влажность воздуха.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн. Под редакцией проф. А. П. Горкина. 2006.

Как образуется водяной пар

Водяной пар образуется в результате «парообразования». Парообразование происходит в результате двух процессов – испарения или кипения. При испарении пар образуется только на поверхности вещества, при кипении же пар образуется по всему объему жидкости, о чем и свидетельствуют пузырьки, активно поднимающиеся вверх во время процесса кипения. Кипение воды происходит при температурах которые зависят от химического состава водного раствора и атмосферного давления, температура кипения остается неизменной на протяжении всего процесса. Пар , образующийся в результате кипения, называется насыщенным. Насыщенный пар в свою очередь подразделяется на насыщенный сухой и насыщенный влажный пар. Насыщенный влажный пар состоит из взвешенных капелек воды, температура которых находится на уровне кипения, и соответственно самого пара, а насыщенный сухой пар не содержит капелек воды.

Так же существует «перегретый пар», который образуется при дальнейшем нагреве влажного пара, этот вид пара обладает более высокой температурой и более низкой плотностью.

Водяной пар является незаменимым элементом такого важного для нашей планеты процесса как Круговорот воды в природе .

С паром мы постоянно сталкиваем в ежедневной жизни, он появляется — над носиком чайника при кипении воды, при глажке, при посещении бани… Однако не забывайте, что, как мы уже отмечали выше, чистый водяной пар не имеет ни цвета, ни вкуса. Благодаря своим физическим свойствам и качествам, пар уже давным-давно нашел свое практическое применение в хозяйственной деятельности человека. И не только в быту, но и при решении больших глобальных задач. Долгое время пар был главной движущей силой прогресса как в прямом так и в переносном смысле этого выражения. Он использовался как рабочее тело паровых машин, самой известной из которых является ПАРОВОЗ.

Использование пара человеком

Пар и в наше время широко используется в хозяйственных и производственных нуждах:

  • в целях гигиены;
  • в лечебных целях;
  • для тушения пожаров;
  • используются тепловые свойства пара (пар как теплоноситель) – паровые котлы; паровые рубашки (автоклавов и реакторов); разогрев «смерзающихся» материалов; теплообменники; отопительные системы; пропарка бетонных изделий; в особого рода теплообменниках … ;
  • используют трансформацию энергии пара в движение – паровые машины … ;
  • стерилизация и дезинфекция – пищевая промышленность, сельское хозяйство, медицина … ;
  • пар как увлажнитель — в производстве железобетонных изделий; фанеры; в пищевой промышленности; в химической и парфюмерной промышленности; в деревообрабатывающих производствах; в сельскохозяйственном производстве … ;

Подводя итоги, отметим, что, несмотря на всю свою «незаметность», водяной пар является не только важным элементом глобальной эко-системы Земли, но так же и весьма полезным веществом для хозяйственной и экономической деятельности человека.

ВОДЯНОЙ ПАР . Паром называется газообразное тело, получающееся из жидкости при соответствующих температуре и давлении. Все газы м. б. обращены в жидкое состояние, и поэтому трудно провести границу между газами и парами. В технике паром считают газообразное тело, состояние которого недалеко от обращения в жидкость. Т. к. в свойствах газов и паров имеются значительные различия, то это различие терминов вполне целесообразно. Водяные пары являются важнейшими из паров, применяемых в технике. Они употребляются, как рабочее тело, в паровых двигателях (паровых машинах и паровых турбинах) и для целей нагревания и отопления. Свойства пара чрезвычайно различны, смотря по тому, находится ли пар в смеси с той жидкостью, из которой получается, или он отделен от нее. В первом случае пар называется насыщенным, во втором случае - перегретым . В технике первоначально применялся почти исключительно насыщенный пар, в настоящее время в паровых двигателях находит самое широкое применение перегретый пар, свойства которого поэтому тщательно изучаются.

I. Насыщенный пар . Процесс испарения лучше уясняется графическими изображениями, например, диаграммой в координатах р, v (удельное давление в кг/см 2 и удельный объем в м 3 /кг). На фиг. 1 изображен схематически процесс испарения для 1 кг воды. Точка а 2 изображает состояние 1 кг воды при 0° и давлении р 2 , причем абсцисса этой точки изображает объем этого количества, ордината - давление, под которым находится вода.

Кривая а 2 аа 1 показывает изменение объема 1 кг воды при повышении давления. Давления в точках а 2 , а, а 1 соответственно равны р 2 , р, р 1 кг 1см 2 . Фактически это изменение чрезвычайно мало, и в технических вопросах можно считать удельный объем воды не зависящим от давления (т. е. линию а 2 аа 1 можно принимать за прямую, параллельную оси ординат). Если нагревать взятое количество воды, сохраняя давление постоянным, то температура воды повышается, и при некоторой величине ее начинается испарение воды. При нагревании воды удельный объем ее, теоретически говоря, несколько увеличивается (по крайней мере, начиная с 4°, т. е. от температуры наибольшей плотности воды). Поэтому точки начала испарения при разных давлениях (р 2 , р, р 1) будут лежать на некоторой другой кривой b 2 bb 1 . Фактически это увеличение объема воды при повышении температуры незначительно, и потому при невысоких давлениях и температурах можно принимать удельный объем воды за постоянную величину. Удельные объемы воды в точках b 2 , b, b 1 обозначаются соответственно через v" 2 , v", v" 1 ; кривая b 2 bb 1 называется нижней предельной кривой. Температура, при которой начинается испарение, определяется тем давлением, под которым находится нагреваемая вода. За все время испарения эта температура не изменяется, если давление остается постоянным. Отсюда следует, что температура насыщенного пара есть функция только давления р. Рассматривая какую-либо линию, изображающую процесс испарения, например bcd, видим, что объем смеси пара и жидкости в процессе испарения возрастает по мере увеличения количества испарившейся воды. В некоторой точке d вся вода исчезает, и получается чистый пар; точки d для разных давлений образуют некоторую кривую d 1 dd 2 , которая называется верхней предельной кривой , или кривой сухого насыщенного пара ; пар в этом состоянии (когда только что закончилось испарение воды) называется сухим насыщенным паром . Если продолжать нагревание после точки d (по направлению к некоторой точке е), оставляя давление постоянным, то температура пара начинает повышаться. В этом состоянии пар называется перегретым. Таким образом получаются три области: правее линии d 1 dd 2 - область перегретого пара, между линиями b 1 bb 2 и d 1 dd 2 - область насыщенного пара и левее линии b 1 bb 2 - область воды в жидком состоянии. В какой-либо промежуточной точке с имеется смесь пара и воды.

Для характеристики состояния этой смеси служит количество х содержащегося в ней пара; при весе смеси в 1 кг (равном весу взятой воды) эта величина х называется пропорцией пара в смеси , или паросодержанием смеси ; количество воды в смеси будет равно (1-x) кг. Если v" м 3 /кг - удельный объем сухого насыщенного пара при температуре t и давлении р кг/см 2 , а объем воды при тех же условиях v", то объем смеси v найдется по формуле:

Объемы v" и v", а следовательно, и их разность v"-v" суть функции давления р (или температуры t). Вид функции, определяющей зависимость р от t для водяного пара, очень сложен; существует много эмпирических выражений для этой зависимости, которые все, однако, годятся лишь для некоторых ограниченных интервалов независимой переменной t. Реньо для температур от 20 до 230° дает формулу:

В настоящее время часто пользуются формулой Дюпре-Герца (Dupre-Hertz):

где k, m и n - постоянные.

Шюле дает эту формулу в следующем виде:

причем для температуры:

а) между 20 и 100°

(р - в кг/см 2 , Т - абсолютная температура пара);

б) между 100 и 200°

в) между 200 и 350°

Характер кривой давления р пара как функции температуры виден на фиг. 2.

В практике пользуются непосредственно таблицами, дающими связь между р и t. Таблицы эти составляются на основании точных опытов. Для нахождения удельных объемов сухого насыщенного пара имеется теоретически выводимая формула Клапейрон-Клаузиуса. Можно пользоваться также эмпирической формулой Молье:

Количество тепла q, необходимое для нагревания 1 кг воды от 0 до t° (начала испарения), выражается так:

где с - теплоемкость воды, в широких пределах мало отличающаяся от единицы; поэтому пользуются приближенной формулой:

Однако уже Реньо убедился в заметном возрастании с при высоких температурах и дал для q выражение:

В новейшее время для с даются такие данные (формула Дитеричи):

Для средней теплоемкости с m в интервале от 0 до t° дано выражение:

Несколько отклоняются от этой формулы данные опытов германского физико-технического института, наблюдения которого дают следующие значения с:

Для обращения в пар воды, нагретой до температуры, нужно еще затратить некоторое количество тепла r, которое называется скрытой теплотой испарения .

В настоящее время эту затрату теплоты разделяют на 2 части: 1) теплоту Ψ, идущую на внешнюю работу увеличения объема при переходе воды в пар (внешнюю скрытую теплоту испарения), и 2) теплоту ϱ, идущую на внутреннюю работу разъединения молекул, происходящую при испарении воды (внутреннюю скрытую теплоту испарения). Внешняя скрытая теплота испарения

где А = 1/427 - тепловой эквивалент механической работы.

Таким образом

Для r дается следующая формула (основанная на опытах германского физико-технического института):

Полная теплота испарения λ, т. е. количество тепла, необходимое для обращения воды, взятой при 0°, в пар при температуре t, равна, очевидно, q+r. Реньо дал для λ следующую формулу:

эта формула дает результаты, близкие к новейшим опытным данным. Шюле дает:

Внутренняя энергия u воды при 0° принимается равной нулю. Для нахождения приращения ее при нагревании воды нужно выяснить характер изменения удельного объема воды при изменении давления и температуры, т. е. вид кривых а 2 аа 1 и b 2 bb 1 (фиг. 1). Простейшим предположением будет принятие этих линий за прямые, и притом совпадающие друг с другом, т. е. принятие удельного объема воды v" за постоянную величину, не зависящую ни от давления, ни от температуры (v" = 0,001 м 3 /кг). При этом предположении вся теплота, идущая на нагревание жидкости, т. е. q, идет на повышение внутренней энергии (так как внешней работы при этом нагревании не совершается). Это предположение годится, однако, только для сравнительно невысоких давлений (таблицы Цейнера даны до давлений в 20 кг/см 2). Современные таблицы (Молье и др.), доходящие до критического давления (225 кг/см 2) и температуры (374°) не могут, конечно, игнорировать изменения объема воды (удельный объем воды при критическом давлении и критической температуре равен 0,0031 м 2 /кг, т. е. в три с лишним раза больше, чем при 0°). Но Стодола и Кноблаух показали, что приведенная у нас выше формула Дитеричи для величины q дает именно величины изменения внутренней энергии (а не величины q); впрочем, разница между этими величинами до давления в 80 кг/см 2 незначительна. Поэтому полагаем для воды внутреннюю энергию равной теплоте жидкости: u" = q. За период испарения внутренняя энергия повышается на величину внутренней скрытой теплоты испарения ϱ, т. е. энергия сухого насыщенного пара будет: (фиг. 3).

Для смеси с пропорцией пара х получим следующее выражение:

Зависимость теплоты испарения и давления от температуры графически дана на фиг. 3.

Молье ввел в техническую термодинамику термодинамическую функцию i, определяемую уравнением и называемую теплосодержанием . Для смеси с пропорцией пара х это даст:

или, после приведения:

для воды (x = 0) получается:

для сухого насыщенного пара:

Величина произведения APv" очень мала по сравнению даже с величиной q (и тем более по сравнению с величиною q + r = λ); поэтому можно принять

В таблицах Молье даются поэтому не величины q и λ, а величины i" и i" в функции р или t°. Энтропия насыщенного пара находится по своему дифференциалу выражение dQ для всех тел имеет вид:

Для насыщенного водяного пара

Первый член представляет собой приращение энтропии воды при ее нагревании, второй член - приращение энтропии смеси во время испарения. Полагая

получим или, интегрируя:

Заметим, что при вычислении s" изменением удельного объема v" обыкновенно тоже пренебрегают и полагают Для решения всех вопросов, касающихся насыщенных паров, пользуются таблицами. В прежнее время в технике находили применение таблицы Цейнера, в настоящее время они являются устарелыми; можно пользоваться таблицами Шюле, Кноблауха или Молье.

Во всех этих таблицах давления и температуры доведены до критического состояния. В таблицы включены следующие данные: температура и давление насыщенного пара, удельный объем воды и пара и удельный вес пара, энтропия жидкости и пара, теплосодержание воды и пара, полная скрытая теплота испарения, внутренняя энергия, внутренняя и внешняя скрытая теплота. Для некоторых вопросов (касающихся, например, конденсаторов) составляются специальные таблицы с малыми интервалами давлений или температуры.

Из всех изменений пара особенный интерес представляет адиабатическое изменение; оно м. б. изучено по точкам. Пусть дана (фиг. 4) начальная точка 1 адиабаты, определяемая давлением р 1 и пропорцией пара x 1 ; требуется определить состояние пара в точке 2, лежащей на адиабате, проходящей через точку 1 и определяемой давлением р 2 . Для нахождения х 2 выражают условие равенства энтропий в точках 1 и 2:

В этом уравнении величины s" 1 , r 1 /T 1 , s" 2 и r 2 /T 2 находятся по данным давлениям р 1 и р 2 , пропорция пара х 1 задана, и неизвестен только х 2 . Удельный объем v -2 в точке 2 определится по формуле:

Величины v"" 2 и v" 2 находятся из таблиц. Внешняя работа рассматриваемого адиабатического изменения находится по разности внутренних энергий вначале и конце изменения:

Для упрощения вычислений часто пользуются при изучении адиабатического изменения эмпирическим уравнением Цейнера, который выражает адиабату как политропу:

Показатель степени μ выражается через начальную пропорцию пара х 1 так:

Формула эта применима в пределах от x 1 = 0,7 до x 1 = 1. Адиабатическое расширение при начальной высокой пропорции пара, выше 0,5, сопровождается обращением части пара в воду (уменьшением x); при начальных пропорциях пара, меньших 0,5, адиабатическое расширение сопровождается, наоборот, испарением части воды. Формулы для остальных случаев изменения насыщенного пара находятся во всех учебниках технической термодинамики.

II. Перегретый пар . Внимание к перегретому пару привлечено было еще в 60-х годах прошлого столетия в результате опытов Гирна, показавших значительную выгоду при применении перегретого пара в паровых машинах. Но особенного распространения перегретый пар достиг после создания В. Шмитом особых конструкций перегревателей специально для получения пара высокого перегрева (300-350°). Эти перегреватели нашли широкое приложение сначала (1894-95 гг.) в стационарных паровых машинах, затем в паровозных машинах и в 20 веке - в паровых турбинах. В настоящее время почти ни одна установка не обходится без применения перегретого пара, причем перегрев доводится до 400-420°. Для возможности рационального применения столь высокого перегрева самые свойства перегретого пара были тщательно изучены. Первоначальная теория перегретого пара дана была Цейнером; она опиралась на немногочисленные опыты Реньо. Ее основные положения: 1) особый вид уравнения состояния, отличающегося от уравнения для идеальных газов добавочным членом, который является функцией только давления; 2) принятие для теплоемкости с р при постоянном давлении постоянного значения: с р = 0,48. Оба эти предположения не подтвердились в опытах над свойствами перегретого пара, произведенных в более широких пределах. Особое значение получили обширные опыты Мюнхенской лаборатории технической физики, начатые около 1900 г. и продолжающиеся и в настоящее время. Новая теория перегретого пара была дана в 1900-1903 гг. Каллендером в Англии и Молье в Германии, но и она не явилась окончательной, так как выражение для теплоемкости при постоянном давлении, получаемое из этой теории, не вполне согласуется с новейшими опытными данными. Поэтому появился целый ряд новых попыток построения уравнения состояния для перегретого пара, которое бы более согласовалось с результатами опытов.

Из этих попыток известность получило уравнение Эйхельберга. Окончательное завершение эти попытки нашли в новой теории Молье (1925-1927 гг.), поведшей к составлению его последних таблиц. Молье принимает очень выдержанную систему обозначений, которой мы отчасти пользовались выше. Обозначения Молье: Р - давление в кг/м 2 абс., р - давление в кг/см 2 абс., v - удельный объем в м 3 /кг, γ = 1/v удельный вес в кг/м 3 , t - температура от 0°, Т = t° + 273° - абсолютная температура, А = 1/427 - тепловой эквивалент механической работы, R = 47,1 - газовая постоянная (для паров воды), s - энтропия, i - теплосодержание в Cal/кг, u = i–APv - внутренняя энергия в Cal/кг, ϕ = s – i/T, с р - теплоемкость при постоянном давлении, c ii p = 0,47 – предельная величина c p при p = 0.

Значки " и " относятся собственно к воде и к сухому насыщенному пару. Из уравнения Молье

при помощи формул, вытекающих из I и II закона термодинамики, получаются все важнейшие величины, характеризующие перегретый пар, т. е, s, i, u и с р. Молье вводит следующие вспомогательные функции температуры:

При помощи этих функций получаются следующие выражения:

Формулы для нахождения удельного объема и прочих величин для перегретого пара довольно сложны и неудобны для вычислений. Поэтому новейшие таблицы Молье заключают в себе вычисленные значения важнейших величин, характеризующих перегретый пар в функции от давления и температуры. При помощи таблиц Молье довольно просто и с достаточной точностью решаются все задачи, касающиеся перегретого пара. Надо еще заметить, что для адиабатического изменения перегретого пара в известных пределах (до 20-25 кг/см 3) сохраняет свое значение уравнение политропического вида: pv 1,3 = Const. Наконец, многие вопросы, касающиеся перегретого пара, м. б. решены при помощи графических приемов, особенно при помощи диаграммы IS Молье. На этой диаграмме помещены кривые постоянных давлений, постоянных температур и постоянных объемов. Т. о. можно прямо из диаграммы получать значения v, s, i в функции давления и температуры. Адиабаты изображаются на этой диаграмме прямыми линиями, параллельными оси ординат. Особенно просто находятся разности величин теплосодержания, соответствующие началу и концу адиабатического расширения; эти разности необходимы для нахождения скоростей истечения пара.

Водяной пар — газовая фаза воды

Водяной пар образуется не только, . Этот термин применим и к туману.

Туман — это пар, который становится видимым из-за капелек воды, которые образуются в присутствии охладителя воздуха — пар конденсируется.

При более низких давлениях, например, в верхних слоях атмосферы или в верхней части высоких гор, вода кипит при более низкой температуре, чем номинальная 100 ° C (212 ° F). При нагревании в дальнейшем становится перегретым паром.

Как газ, водяной пар может содержать только определенное количество водяного пара (количество зависит от температуры и давления).

Пар-жидкость равновесие является состоянием, при котором жидкость и пар (газовая фаза) находятся в равновесии друг с другом, это такое состояние, когда скорость испарения (жидкие изменения в пар) равна скорости конденсации (превращения пара в жидкость) на молекулярном уровне, что в целом означает взаимопревращения «пар-вода» . Хотя в теории равновесия можно достичь в относительно замкнутом пространстве, соотносятся в контакте друг с другом достаточно долго без каких-либо помех или вмешательств извне. Когда газ поглотил свое максимальное количество, он, как говорят, находится в жидком паровом равновесии, но если в нем больше воды, он описывается как ‘влажный пар’.

Вода, водяной пар и их свойства на Земле

  • полярных шапок льда на Марсе
  • Титан
  • Европа
  • Кольца Сатурна
  • Энцелад
  • Плутон и Харон
  • Кометы и кометы источником населения (пояса Койпера и облаком Оорта объектов).

Вода-лед может присутствовать на Церере и Тетис. Вода и другие летучие вещества, вероятно, составляют большую часть внутренних структур Урана и Нептуна и воды в глубокие слои могут быть в виде ионной воды, в которой молекулы распадаются на суп из водорода и ионы кислорода, и глубже, как суперионные воды, в которой кислород кристаллизуется, но ионы водорода плавают свободно в пределах кислорода решетки.

Некоторые из полезных ископаемых Луны содержат молекулы воды. Например, в 2008 году лаборатории устройство, которое собирает и определяет частицы, обнаружены небольшие количества соединений, внутри вулканического жемчуга, привезенного с Луны на Землю Аполлон-15 экипаж в 1971 году. НАСА сообщили об обнаружении молекул воды НАСА Луна минералогии Mapper на борту Чандраян-1 корабля Индийской организации космических исследований в сентябре 2009 года.

Области применения пара

Пар используется в широком спектре отраслей промышленности. Общие приложения для пара, например, связаны с паровым обогревом процессов на фабриках и заводах и на паровых приводных турбинах на электростанциях…

Вот некоторые типичные приложения для пара в промышленности: Отопление / Стерилизация, Движение / привод, Распыление, Очистка, Увлажнение…

Связь воды и пара, давления и температуры

Насыщение (сухого) пара результат процесса, когда вода нагревается до температуры кипения, а затем испаряется с дополнительным выделением тепла (скрытое отопление).

Если эта пара затем дополнительно нагревается выше точки насыщения, пар становится перегретым паром (фактическое отопление).

Насыщенный пар

Насыщенный пар образуется при температурах и давлениях, где пар (газ) и вода (жидкость) могут сосуществовать. Другими словами, это происходит, когда скорость испарения воды равна скорости конденсации.

Преимущества использования насыщенного пара для отопления

Насыщенный пар обладает многими свойствами, которые делают его отличным источником тепла, особенно при температуре 100 ° C (212 ° F) и выше.

Влажный пар

Это наиболее распространенная форма пара, которую на самом деле испытывает на себе большинство растений. Когда пар произведен, используя котел, он обычно содержит влажность от невыпаренных молекул воды, которые перенесены в распределенный пар. Даже самые лучшие котлы могут распустить пар, содержащий от 3% до 5% влажности. Когда вода подходит к состоянию насыщения и начинает испаряться, немного воды, как правило, оседает в виде тумана или капель. Это одна из ключевых причин, почему образуется конденсат из распределенных пар.

Перегретый пар

Перегретый пар создается при дальнейшем нагревании влажного или насыщенного пар вне точки насыщенного пара. Это дает пар, который имеет более высокую температуру и низкую плотность, чем у насыщенного пара при том же давлении. Перегретый пар используется в основном в двигателе / ??приводе турбины, и обычно не используется для теплопередачи.

Сверхкритическая вода

Сверхкритическая вода есть вода в состоянии, которое превышает его критическую точку: 22.1MPa, 374 ° C (3208 PSIA, 705 ° F). В критической точке, скрытая теплота пара равна нулю, а его удельный объем точно такой же, будь то жидкое или газообразное состояние. Иными словами, вода, которая находится при более высоком давлении и температуре, чем критическая точка, находится в неразличимом состоянии, которое не является ни жидкостью, ни газом.

Сверхкритических вода используется для привода турбин на электростанциях, которые требуют более высокой эффективности. Исследование сверхкритической воды выполняется с акцентом на его использование в качестве жидкости, которая имеет свойства как жидкости, так и газа, и в частности о его пригодности в качестве растворителя для химических реакций.

Различные состояния Воды

Ненасыщенные воды

Это вода в ее наиболее узнаваемом состоянии. Около 70% веса человеческого тела из воды. В жидком виде вода имеет устойчивые водородные связи в молекуле воды. Ненасыщенные воды относительно компактные, плотные, и стабильные структуры.

Насыщенный пар

Насыщенные молекулы пара невидимы. Когда насыщенный пар поступает в атмосферу, будучи вентилируемый из трубопроводов, часть его конденсируется, передавая свое тепло окружающему воздуху, и образуются клубы белого пара (крошечные капельки воды). Когда пар включает в себя эти крошечные капельки, это называется влажным паром.

В паровой системе, паровые потоки, идущие от конденсатоотводчиков часто неправильно называют насыщенными парами, в то время как это на самом деле пар вторичного вскипания. Разница между ними состоит в том, что насыщенный пар невидим сразу на выходе из трубы, в то время как облако пара содержит видимые капли воды, которые мгновенно в нем образуются.

Перегретый пар

Перегретый пар не будет конденсироваться, даже если он вступает в контакт с атмосферой и на него воздействуют перепады температуры. В результате, облака пара не образуются.

Перегретый пар сохраняет больше тепла, чем насыщенный пар при том же давлении, и движение его молекул происходит быстрее, поэтому он имеет более низкую плотность (т. е. его удельный объем больше).

Сверхкритическая вода

Хотя не возможно сказать визуальным наблюдением, это — вода в форме, которая не является ни жидкой, ни газообразной. Общее представление имеет молекулярное движение, которое является близко к тому из газа, и плотности, которая ближе к той из жидкости.

Хотя нельзя сказать, путем визуального наблюдения, это вода в какой форме, она не является ни жидкой, ни газообразной. Общее представление имеет молекулярное движение, близкое к газу, а плотность такой воды ближе к жидкости.

Тема 2. Основы теплотехники.

Теплотехника - это наука, изучающая методы получения, преобразования, передачи и использования теплоты. Тепловая энергия получается при сжигании органических веществ, называемых топливом.

Основы теплотехники составляют:

1. Термодинамика - наука, изучающая превращение энергии тепла в другие виды энергии (например: тепловая энергия в механическую, хими­ческую и т. д.)

2. Теплопередача - изучает теплообмен между двумя теплоносите­лями через поверхность нагрева.

Рабочим телом является теплоноситель (водяной пар или горячая вода), который способен передавать теплоту.

В котельной теплоносителем (рабочим телом) является горячая вода и водяной пар с температурой 150°С или водяной пар с температурой до 250°С. Для отопления жилых и обще­ственных зданий используется горячая вода, это связано, с санитарно-гигиеническими условиями, возможностью легкого изменения ее темпера­туры в зависимости от температуры наружного воздуха. Вода обладает значительной плотностью по сравнению с паром, что позволяет передавать на большие расстояния значительное количество тепла при небольшом объеме теплоносителя. В систему отопления зданий вода подается с тем­пературой не выше 95°С во избежание пригорания пыли на приборах ото­пления иожогов от систем отопления. Пар используется для отопления промышленных зданий и в производственно-технологических системах.

Параметры рабочего тела

Теплоноситель, получая или отдавая тепловую энергию, изменяет свое состояние.

Например: Вода в паровом котле нагревается, превращается в пар, ко­торый имеет определенную температуру и давление. Пар поступает в па­роводяной подогреватель, сам охлаждается, превращается в конденсат. Температура нагреваемой воды увеличивается, температура пара и конден­сата понижается.

Основными параметрами рабочего тела являются температура, давление, удельный объем, плотность.

t, P- определяется приборами: манометрами, термометрами.

Удельный объем и плотность является расчетной величиной.

1. Удельный объем - объем занимаемый единицеймассы вещества при

0°С и атмосферном давлении 760 мм.рт.ст. (при нормальных условиях)

где: V- объем (м 3); m- масса вещества (кг); стандартное условие: Р=760мм р.ст. t=20 о С

2. Плотность - отношение массы вещества к его объему. каждое вещество имеет свою плотность:

В практике применяется относительная плотность – отношение плотности данного газа к плотности стандартного вещества (воздуха) при нормальных условиях (t° = 0°С: 760 мм. рт.ст.)

Сравнивая плотность воздуха с плотностью метана, мы можем определить из каких мест брать пробу на наличие метана.

получаем,

газ легче воздуха, значит, он заполняет верхнюю часть любого объема, проба берется из верхней части топки котла, колодца, камер, помещения. Газоанализаторы устанавливаются в верхней части помещений.

(мазут легче, занимает верхнюю часть)

Плотность угарного газа почти, такая как у воздуха, поэтому проба на угарный газ берется в 1.5 метров от пола.

3. Давление - эта сила, действующая на единицу площади поверхности.

Давление силы, равной 1Н, равномерно распределенное на поверх­ности 1м 2 принято за единицу давления и равно 1Па (Н/м 2) в системе СИ (сейчас в школах, в книгах все идет в Па, приборы тоже стали в Па).

Величина Па мала по значению, пример: если взять 1 кг воды разлить на 1 метр получаем 1 мм.в.ст. ,поэтому вводятся множители и приставки- МПа, КПа…

В технике применяются более крупные единицы измерения

1кПа=10 3 Па; 1МПа=10 б Па; 1ГПа=10 9 Па.

Вне системные единицы измерения давления кгс/м 2 ; кгс/см 2 ;мм.в.ст;мм.р.ст.

1 кгс/м 2 = 1 мм.в ст =9,8 Па

1 кгс/см 2 = 9,8 . 10 4 Па ~ 10 5 Па = 10 4 кгс/м 2

Давление не редко измеряют в физических и технических атмосферах.

Физическая атмосфера - среднее давление атмосферного воздуха на уровне моря при н.у.

1атм = 1,01325 . 10 5 Па = 760 мм рт.ст. = 10,33 м вод. ст = 1,0330 мм в. ст. = 1,033 кгс/ см 2 .

Техническая атмосфера- давление вызываемое силой в 1кгс равномерно распределенное по нормальной к ней поверхности площадью в 1см 2 .

1ат = 735 мм рт. ст. = 10 м. в. ст. = 10.000 мм в. ст. = =0,1 МПа= 1 кгс/см 2

1 мм в. ст. - сила, равная гидростатическому давлению водяного сто­лба высотой в 1 мм на плоское основание 1мм в. ст = 9,8 Па.

1 мм. рт. ст - сила, равная гидростатическому давлению столба ртути высотой 1 мм на плоское основание. 1 мм рт. ст. = 13,6 мм. в. ст.

В технических характеристиках насосов вместо давления употреб­ляется термин напор. Единицей измерения напора является м. вод. ст. Например: Напор создаваемый насосом равен 50 м вод. ст. это значит, он может поднять воду на высоту 50 м.

Виды давления : избыточное, вакуум (разрежение, тяга), абсолютное, атмосферное .

Если стрелка отклоняется в строну большую нуля то это избыточное давление, в меньшую – разряжение.

Абсолютное давление:

Р абс =Р изб +Р атм

Р абс =Р вак +Р атм

Р абс =Р атм -Р разр

где: Р атм =1 кгс/см 2

Атмосферное давление - среднее давление атмосферного воздуха на уровне моря при t° = 0°С и нормальном атмосферном Р =760 мм. рт. ст.

Избыточное давление - давление выше атмосферного (в замкнутом объеме). В котельных под избыточным давлением находятся вода, пар в котлах и трубопроводах. Р изб. измеряется приборами манометрами.

Вакуум (Разрежение) - давление в замкнутых объемах меньше атмосферного (вакуум). Топки и дымоходы котлов находятся под разрежением. Разрежение измеряется приборами тягомерами.

Абсолютное давление - избыточное давление или разрежение с уче­том атмосферного давления.

По назначению давление бывает:

1). Русловное - наибольшее давление при t=20 o С

2). Ррабочее – максимально избыточное давление в котле, при котором обеспечивается длительная работа котла при нормальных условиях эксплуатации (указывается в производственной инструкции).

3). Рразрешенное - максимально допустимое давление, установленное по результатам технического освидетельствования или контрольного расчета на прочность.

4). Ррасчетное – максимально избыточное давление, на котором производится расчет прочность элементов котла.

5). Рпробное - избыточное давление, при котором производят гидравлические испытания элементов котла на прочность и плотность (один из видов технического освидетельствования).

4. Температура - это степень нагретости тела, измеряется в градусах. Определяет направление самопроизвольной передачи тепла от более нагретого к менее нагретому те­лу.

Передача тепла будет иметь место до того момента пока температуры не станут равными, т. е. наступит температурное равновесие.

Используются две шкалы: международная - Кельвина и практическая Цельсия t °С.

За ноль в этой шкале принята температура плавления льда, за сто градусов – температура кипения воды при атм. давлении (760 мм рт. ст.).

За начало отсчета в термодинамической шкале температур Кельвина применят абсолютный нуль (низшая теоретически возможная температура, при которой отсутствует движение молекул). Обозначается Т.

1 Кельвин по величине равен 1° шкалы Цельсия

Температура таяния льда равна 273К. Температура кипения воды равна 373К

Т=t + 273; t = T-273

Температура кипения зависит от давления.

Например, При Р аб c = 1,7 кгс/см 2 . Вода кипит при t = 115°С.

5. Теплота - энергия, которая может передаваться от более нагретого те­ла к менее нагретому.

В системе СИ единицей измерения теплоты и энергии является Джоуль (Дж). Внесистемная единица измерения теплоты - калория (кал.).

1 кал. - количество теплоты необходимое для нагрева 1 г Н 2 О на 1°С при

Р = 760 мм. рт.ст.

1 кал. =4,19Дж

6.Теплоемкость способность тела поглощать теплоту. Для того чтобы два различных вещества с одинаковой массой нагреть до одинаковой температуры, нужно затратить различное количество теплоты.

Удель­ная теплоемкость воды – количество тепла которое необходимо сообщить единицей вещества чтобы повысить его t на 1°С, равна 1 ккал/кг град.

Способы передачи теплоты.

Различают, три способа переноса теплоты:

1.теплопроводность;

2.излучение (радиация);

3.конвекция.

Теплопроводность-

Перенос теплоты вследствие теплового движе­ния молекул, атомов и свободных электронов.

Каждое вещество имеет свою теплопроводность, она зависит от хими­ческого состава, структуры, влажности материала.

Количественной характеристикой теплопроводности является коэф­фициент теплопроводности этоколичество теплоты, передаваемые через единицу поверхности нагрева в единицу времени при разности t в о С и толщине стенки в 1 метр.

Коэффициент теплопроводности ( ):

Медь = 330 ккал . м/м 2. ч . град

Чугун = 5 4 ккал . м/м 2. ч . град

Сталь =39 ккал . м/м 2. ч . град

Видно что: хорошей теплопроводностью обладают металлы, лучше всего медь.

Асбест =0,15 ккал . м/м 2. ч . град

Сажа =0,05-0, ккал . м/м 2. ч . град

Накипь =0,07-2 ккал . м/м 2. ч . град

Воздух =0,02 ккал . м/м 2. ч . град

Слабо проводят теплоту пористые тела (асбест, сажа, накипь).

Сажа затрудняет передачу тепла от топочных газов к стенке котла (проводит тепло хуже стали в 100 раз), что приводит к перерасходу топлива, снижению выработки пара или горячей воды. При наличии сажи повышается температура уходящих газов. Все это ведет и уменьшению КПД котла. При работе котлов ежечасно по приборам (логометр) контролируется t ух.газов, значения которых указаны в режимной карте котла. Если t ух.газов повысилась то производится обдувка поверхности нагрева.

Накипь образуется внутри труб (в 30-50 раз хуже проводит тепло, чем сталь), тем самым уменьшает теплопередачу от стенки котла к воде, в резуль­тате стенки перегреваются, деформируются, разрываются (разрыв труб котла). На­кипь в 30-50 раз хуже проводит тепло, чем сталь

Конвекция -

Перенос теплоты перемешиванием или перемещением частиц между собой (характерна только для жидкостей и газов). Различают конвекцию естественную и принудительную.

Естественная конвекция - свободное движение жидкости или газов за счет разности плотностей неравномерно нагретых слоев.

Принудительная конвекция - вынужденное движение жидкости или газов за счет давления или разрежения, создаваемых насосами, дымосо­сами и вентиляторами.

Способы увеличения конвективного теплообмена:

§ Увеличение скорости потока;

§ Турбулизация (завихрение);

§ Увеличение поверхности нагрева (за счет установки ребер);

§ Увеличение разности температур между греющей и нагреваемой средами;

§ Противоточное движение сред (противоток) .

Излучение (радиация)-

Теплообмен между телами находящимися на расстоянии друг от друга за счет лучистой энергии, носителями которой являются электромагнитные колебания: происходит превращение тепловой энергии в лучистую и наоборот, из лучистой в тепловую.

Излучение наиболее эффективный способ передачи теплоты, особенно если изучающее тело имеет высокую температуру, а лучи на­правлены перпендикулярно к нагреваемой поверхности.

Для улучшения теплообмена излучением в топках котлов выкладываются из огнеупорных материалов специальные щели, которые одновременно являются излучателями теплоты и стабилизаторами горения.

Поверхность нагрева котла – поверхность, с которой с одной стороны омывается газами с другой стороны водой.

Рассмотренные выше 3 вида теплообмена в чистом виде встреча­ются редко. Практически один вид теплообмена сопровождается другим. В котле присутствуют все три вида теплообмена, который называется сложным теплообменом.

В топке котла:

А) от факела горелки к внешней поверхности труб котла- излучением.

Б) от образующихся дымовых газов к стенке –конвекцией

В) от внешней поверхности стенки трубы к внутренней- теплопроводностью.

Г) от внутренней поверхности стенки трубы к воде, циркуляцией вдоль поверхности – конвекцией.

Перенос теплоты от одной среды к другой через разделительную стенку называется теплопередачей.

Вода, водяной пар и его свойства

Вода простейшая устойчивая в обычных условиях химическое соединение водорода с кислородом, наибольшая плотность воды 1000кг/м 3 при t=4 о С.

Вода, как и всякая жидкость, подчиняется гидравлическим законам. Она почти не сжимается, поэтому обладает способностью передавать давление, оказываемое на нее во все стороны с одинаковой силы. Если несколько сосудов разной формы соединить между собой, то уровень воды будет одинаковый везде (закон сообщающихся сосудов).