Механизм работы слухового анализатора коротко. Основные принципы строения слухового анализатора


Орган слуха человека (рис. 7) улавливает (наружное ухо), усиливает (среднее ухо) и воспринимает (внутреннее ухо) звуковые колебания, представляя собой, по сути, дистантный анализатор, периферический (сенсорный) отдел которого располагается в пирамиде височной кости (улитке).

Наружное ухо включает ушную раковину и наружный слуховой проход, который заканчивается плотной фиброзной мембраной – барабанной перепонкой, являющейся границей между наружным и средним ухом. Ушная раковина служит коллектором звуковых волн и определителем направления источника звука при слушании двумя ушами (бинауральный слух ). Оба уха выполняют одну работу, но не сообщаются, что способствует более полному получению информации. Слуховой проход является не только проводником звуков, но и резонатором в диапазоне речевых частот от 2 000 до 2 500 Гц. Звук усиливается на эти частоты от 5 до 10 дБ. Продольные колебания воздуха, несущие звук, вызывают механические колебания барабанной перепонки, но для того, чтобы быть переданными мембране окна улитки, отделяющей среднее ухо от внутреннего, и далее – эндолимфе внутреннего уха, эти колебания должны быть существенно усилены.

Рис. 7. Строение уха

Наружное ухо: 1 – ушная раковина; 2 – слуховой проход; 3 – барабанная перепонка.

Среднее ухо: 4 – полость среднего уха; 5 – слуховая труба; косточки среднего уха: молоточек (а), наковальня (б), стремечко (в);

Внутреннее ухо: 6 – улитка; 7 – слуховой нерв.

Вестибулярный аппарат: 8 – преддверие с мешочками; 9 – полукружные каналы.

Среднее ухо – усилитель звуковых колебаний, уловленных ухом. Звукопроводящий аппарат человека – весьма совершенная механическая система. Она способна отвечать на минимальные колебания воздуха и проводить их к звуковоспринимающей системе, где осуществляется первичный анализ звуковой волны. Колебания барабанной перепонки, преобразующей воздушные звуковые волны в механические колебания, передаются на находящиеся в полости среднего уха, сочленяющиеся между собой слуховые косточки – молоточек, наковальню и стремечко (рис. 7). Эта система слуховых косточек обеспечивает, по новейшим данным, усиление приходящего с барабанной перепонки звука в 20–25 раз, что позволяет преодолеть сопротивление мембраны овального окна, отделяющего полость среднего уха от полости внутреннего и передать колебания эндолимфе внутреннего уха. Роль барабанной перепонки и слуховых косточек сводится к трансформации воздушных колебаний большой амплитуды и относительно малой силы в колебания ушной эндолимфы с относительно малой амплитудой, но большим давлением.

При звуках большой интенсивности система сочленения слуховых косточек приобретает защитное, амортизирующее значение. Основной путь доставки звуков к улитке – воздушный, второй путь – костный. В этом случае звуковая волна непосредственно действует на кости черепа.


Одно из важных условий нормальной воздушной передачи звуков – отсутствие разности в давлении по обе стороны барабанной перепонки, что обеспечивается венти­ляционной способностью слуховой («евстахиевой») трубы. Последняя имеет длину 3,5 см и ширину всего 2 мм, и соединяет в виде канала барабанную полость с носоглоткой. При глотании этот проход открывается, вентилируя среднее ухо и происходит уравнивание давления в нём с атмосферным.

Наиболее сложное строение имеет внутреннее ухо . Расположенное в каменистой части височной кости, оно представляет собой костный лабиринт, внутри которого находится перепончатый лабиринт из соединительной ткани. Перепончатый лабиринт как бы вставлен в костный лабиринт и, в общем, повторяет его форму. Между костным и перепончатым лабиринтами находится перилимфа , внутри перепончатого – эндолимфа. Во внутреннем ухе различают три отдела: улитку, преддверие улитки и полукружные каналы, но сенсорным аппаратом слуха является лишь улитка. Два другие образования относятся к системе вестибулярного анализатора.

Орган слуха находится в улитке , которая представляет собой спиральный костный канал, который спирально завивается вокруг костного стержня конусообразной формы на 2,5–2,75 завитка, и слепо заканчивается в области верхушки пирамиды.

Рис. 8. Спиральный орган в улитке

А – вскрытая улитка: 1 – положение спирального органа в улит­ке;

2 – основная мембрана; 3 – слуховой нерв.

Б – спиральный орган: 1 - покровная мембрана; 2 - ретевидная мембрана;

3 – наружные и внутренние волосковые клетки; 4 - опорные клетки;

5 – волокна кохлеарного нерва (в поперечном разрезе);

6 - наружные и внутренние столбы; 7 – кохлеарный нерв

Спиральный канал улитки имеет длину 28–30 мм. По диаметру в начальном отделе спиральный канал широкий (6 мм), а по мере приближения к верхушке улитки постепенно суживается, достигая 2 мм. От стержня, вокруг которого проходит этот канал, в просвет последнего, отходит костная спиральная базилярная (основная) пластинка, и, направляясь в сторону периферической стенки спирального канала, заканчивается, не доходя до нее, на середине поперечника канала. От свободного края костной спиральной пластинки к противоположной стенке улитки на всем протяжении натянута базилярная пластинка, которая является частью перепончатой улитки. Таким образом, спиральный канал улитки продольными перегородками оказывается разделённым на верхнюю (лестница преддверия), среднюю (спиральный орган) и нижнюю (барабанная лестница) части, заполненные эндолимфой. Рецепторы слуха находятся в базилярной пластинке спирального органа, расположенного в средней части канала (рис. 8А).

Базилярная пластинка состоит из примерно 20 тысяч тонких эластичных волокон, натянутых в виде струн различной длины между костным спиральным гребнем и наружной стенкой улитки (наподобие музыкального инструмента – арфы). У начального завитка улитки волокна короче и тоньше, а у последнего – длиннее и толще. Натяжение волокон постепенно ослабевает от основания к верхушке улитки. Связь между волокнами весьма слабая, и поэтому возможно изолированное колебание отдельных участков мембраны. В колебание вовлекаются только те волоски, которым сродни частоты поступившего сигнала (по типу явления резонанса). Чем меньше колеблющихся волосков, и чем ближе они расположены к окну преддверия, тем ниже по частоте звук.

Рис. 9. Слуховой анализатор

К слуховым волоскам подходят дендриты волосковых (биполярных) чувствительных клеток , входящих в состав спирального узла, расположенного тут же, в центральной части улитки. Аксоны же биполярных (волосковых) клеток спирального (улиткового) узла формируют слуховую ветвь преддверно-улитко-вого нерва (VIII пара черепно-мозговых нервов), идущего к ядрам слухового анализатора, расположенным в мосту (второй слуховой нейрон), подкорковым слуховым центрам в четверохолмии (третий слуховой нейрон) и корковому центру слуха в височной доле каждого полушария (рис. 9), где формируются в слуховые ощущения. Всего в слуховом нерве примерно 30 000–40 000 афферентных волокон. Колеблющиеся волосковые клетки вызывают возбуждение лишь в строго определённых волокнах слухового нерва, а значит, и в строго определённых нервных клетках коры головного мозга.

Каждое полушарие получает информацию от обоих ушей (бинауральный слух ), благодаря чему становится возможным определять источник звука и его направление. Если звучащий предмет находится слева, то импульсы от левого уха приходят в мозг раньше, чем от правого. Эта небольшая разница во времени и позволяет не только определять направление, но и воспринимать звуковые источники из разных участков пространства. Такое звучание называется объемным или стереофоническим.

Физиология слуха

Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны. Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.

Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.

Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.

Различные возможности слуха оцениваются дифференциальными порогами (ДП), т. е. улавливанием минимально изменяемых какого-либо из параметров звука, например, его интенсивности или частоты. У человека дифференциальный порог по интенсивности равен 0,3-0,7 дБ, по частоте 2-8 Гц.

Кость хорошо проводит звук. При некоторых формах глухоты, когда слуховой нерв не поврежден, звук проходит через кости. Глухие иногда могут танцевать, слушая музыку через пол, воспринимая её ритм ногами. Бетховен слушал игру на рояле через трость, которой он опирался на рояль, а другой конец держал в зубах. При костно-тканевом проведении, можно слышать ультразвуки – звуки с частотой свыше 50 000 Гц.

При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация ).

Временное снижение слуховой чувствительности с более длительным периодом восстановления нормальной остроты слуха, также возникающее при длительном воздействии интенсивных звуков, но восстанавливающееся после кратковременного отдыха, носит название слухового утомления . Слуховое утомление, в основе которого лежит временное охранительное торможение в коре головного мозга, – это физиологическое явление, носящее защитный характер против патологического истощения нервных центров. Не восстанавливающееся после кратковременного отдыха слуховое утомление, в основе которого лежит стойкое запредельного торможение в структурах головного мозга, носит название слухового переутомления , требующего для его снятия проведения целого ряда специальных лечебно-оздоровительных мероприятий.

Физиология звукового восприятия. Под влиянием звуковых волн в мембранах и жидкости улитки происходят сложные перемещения. Изучение их затруднено как малой величиной колебаний, так и слишком малым размером улитки и глубиной ее расположения в плотной капсуле лабиринта. Еще труднее выявить характер физиологических процессов, происходящих при трансформации механической энергии в нервное возбуждение в рецепторе, а также в нервных проводниках и центрах. В связи с этим существует лишь ряд гипотез (предположений), объясняющих процессы звуковосприятия.

Самая ранняя из них – теория Гельмгольца (1863 г.). По этой теории, в улитке возникают явления механического резонанса, в результате которого сложные звуки разлагаются на простые. Тон любой частоты имеет свой ограниченный участок на основной мембране и раздражает строго определенные нервные волокна: низкие звуки вызывают колебание у верхушки улитки, а высокие – у её основания.

Согласно новейшей гидродинамической теории Бекеши и Флетчера, которая в настоящее время считается основной, действующим началом слухового восприятия является не частота, а амплитуда звука. Амплитудному максимуму каждой частоты в диапазоне слышимости соответствует специфический участок базилярной мембраны. Под влиянием звуковых амплитуд в лимфе обеих лестниц улитки происходят сложные динамические процессы и деформации мембран, при этом место максимальной деформации соответствует пространственному расположению звуков на основной мембране, где наблюдались вихревые движения лимфы. Сенсорные клетки сильнее всего возбуждаются там, где амплитуда колебаний максимальна, поэтому разные частоты действуют на различные клетки.

В любом случае, приводимые в колебание волосковые клетки, касаются кроющей мембраны и изменяют свою форму, что приводит к возникновению в них потенциала возбуждения. Возникающее в определенных группах рецепторных клеток возбуждение, в виде нервных импульсов распространяется по волокнам слухового нерва в ядра ствола мозга, подкорковые центры, расположенные в среднем мозге, где информация, содержащаяся в звуковом стимуле, многократно перекодируется по мере прохождения через различные уровни слухового тракта. В ходе этого процесса нейроны того или иного типа выделяют «свои» свойства стимула, что обеспечивает довольно специфичную активацию нейронов высших уровней. По достижении слуховой зоны коры, локализующейся в височных долях (поля 41 – первичная слуховая кора и 42 – вторичная, ассоциативная слуховая кора по Бродману), эта многократно перекодированная информация преобразуется в слуховое ощущение. При этом в результате перекреста проводящих путей, звуковой сигнал из правого и левого уха попадает одновременно в оба полушария головного мозга.

Возрастные особенности становления слуховой чувствительности. Развитие периферических и подкорковых отделов слухового анализатора в основном заканчивается к моменту рождения, и слуховой анализатор начинает функционировать уже с первых часов жизни ребёнка. Первая реакция на звук проявляется у ребёнка расширением зрачков, задержкой дыхания, некоторыми движениями. Затем ребёнок начинает прислушиваться к голосу взрослых и реагировать на него, что связано уже с достаточной степенью развития корковых отделов анализатора, хотя завершение их развития происходит на довольно поздних этапах онтогенеза. Во втором полугодии ребёнок воспринимает определённые звукосочетания и связывает их с определёнными предметами или действиями. В возрасте 7–9 месяцев малыш начинает подражать звукам речи окружающих, а к году у него появляются первые слова.

У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 мес. звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.

2.3. Патология слухового анализатора

Нарушения слуха – это незаметное препятствие, которое может иметь далеко идущие психологические и социальные последствия. Больные со сниженным слухом или страдающие полной глухотой сталкиваются со значительными трудностями. Отрезанные от словесной коммуникации, они во многом утрачивают связь с близкими и другими окружающими их людьми и существенно изменяют свое поведение. С задачами, за решение которых отвечает слух, другие сенсорные каналы справляются крайне неудовлетворительно, поэтому слух – это важнейшее из человеческих чувств, и его потерю нельзя недооценивать. Он требуется не только для понимания речи окружающих, но и для умения говорить самому. Глухие от рождения дети не научаются говорить, так как лишены слуховых стимулов, поэтому глухота, возникающая до приобретения речи, относится к особенно серьезным проблемам. Невозможность говорить приводит к всеобщему отставанию в развитии, уменьшая возможности обучаться. Поэтому тугоухие от рождения дети, должны начинать пользоваться слуховыми аппаратами до 18-месячного возраста.

Дети с нарушением слуха делятся на три категории (классификация):

Ø глухие это дети с тотальным выпадением слуха, среди которых выделяются глухие без речи (рано оглохшие) и глухие, сохранившие речь. К рано оглохшим детям относятся и дети с двусторонним стойким нарушением слуха. У детей с врожденным или приобретенным до речевого развития нарушением слуха, в последствии глухота компенсируется другими анализаторами (наглядно-зрительными образами, вместо словесно-логических). Основная форма общения – мимика и жесты.

У детей, сохранивших речь, из-за отсутствия слухового контроля, она нечёткая, смазанная. У детей часто возникают нарушения голоса (неадекватная высота голоса, фальцет, гнусавость, резкость, неестественность тембра), так же встречаются нарушения речевого дыхания. В психическом плане дети неустойчивы, заторможены, с большими комплексами.

Ø позднооглохшие дети с потерей слуха, но с относительно сохранной речью. Они обучаются в специальных школах по специальным программам с соответствующими ТСО для нормализации остаточного слуха (прибор для вибрации, прибор механической защиты речи). Устная речь воспринимается на слух с искажениями, поэтому возникают трудности в обучении, в подборе восприятия речи, в выражении и проговаривании речи. Эти дети замкнуты, раздражительны, владеют речью с нарушениями лексического и грамматического строя речи.

Ø слабослышащие – эти дети с частичной слуховой недостаточностью, затрудняющей слуховое развитие, но сохранившие возможность самостоятельно накоплять речевой запас.

По глубине нарушения слуха выделяют 4 степени:

легкая восприятие шепота на расстоянии 3-6 м, разговорной речи 6-8 м;

умеренная – восприятие шепота – 1-3 м, разговорной речи 4-6 м;

значительная – восприятие шепота – 1 м, разговорной речи 2-4 м;

тяжелая – восприятие шепота – не бол. 5-10 см от уха, разговорной речи – не более 2 метров.

Снижение остроты слуха в силу каких-либо патологических процессов в любом из отделов слухового анализатора (гипоакузия ) или потеря слуха – это наиболее частое следствие патологии слухового анализатора. Более редкими формами нарушения слуха являются гиперакузия , когдадаже обычная речь вызывает болевые или неприятные звукоощущения (может наблюдаться при поражении лицевого нерва); двоение звука (диплакузия ), возникающее при неодинаковом воспроизведении левым и правым ухом высоты звукового сигнала; паракузия – улучшение остроты слуха в шумной обстановке, характерная для отосклероза.

Гипоакузия условно может быть связана с тремя категориями причин:

1. Нарушения проведения звука. Ослабление слуха вследствие механического препятствия для прохождения звуковых волн может быть вызвано накоплением в наружном слуховом проходе ушной серы . Она выделяется железами наружного слухового прохода и выполняет защитную функцию, но, скапливаясь в наружном слуховом проходе, образует серную пробку, удаление которой полностью восстанавливает слух. Сходный эффект даёт и присутствие инородных тел в слуховом проходе, которое особенно часто отмечается у детей. Следует отметить, что основную опасность представляет не столько присутствие инородного тела в ухе, сколько неудачные попытки его удаления.

Нарушение слуха может быть вызвано разрывом барабанной перепонки при воздействии очень сильных шумов или звуков, например, взрывной волны. В таких случаях рекомендуется открывать рот к моменту, когда произойдет взрыв. Частой причиной перфорации барабанной перепонки является ковыряние в ухе шпильками, спичками и другими предметами, а также неумелые попытки удаления инородных тел из уха. Нарушение целости барабанной перепонки при сохранности остальных отделов слухового органа, сравнительно мало отражается на слуховой функции (страдает лишь восприятие низких звуков). Главную опасность несут последующие инфицирование и развитие гнойного воспаления в барабанной полости.

Потеря эластичности барабанной перепонки при воздействии производственных шумов приводит к постепенной потере остроты слуха (профессиональной тугоухости).

Воспаление тимпанально-косточкового аппарата снижает его способности по усилению звука и даже при здоровом внутреннем ухе слух ухудшается.

Воспаления среднего уха представляют опасность для слухового восприятия своими последствиями (осложнениями), которые наиболее часто отмечаются при хроническом характере воспаления (хронический средний отит). Например, вследствие образования спаек между стенками барабанной полости и перепонкой, подвижность последней снижается, в результате чего возникает ухудшение слуха, шум в ушах. Очень частым осложнением как хронического, так и острого гнойного отита, является прободение барабанной перепонки. Но главная опасность таится в возможном переходе воспаления на внутреннее ухо (лабиринтит), на мозговые оболочки (менингит, абсцесс мозга), либо в возникновении общего заражения крови (сепсиса).

Во многих случаях даже при правильном и своевременном лечении, особенно хронического среднего отита, восстановления слуховой функции в полном объёме не достигается, в силу возникающих рубцовых изменений барабанной перепонки, сочленений слуховых косточек. При поражениях среднего уха, как правило, возникает стойкое понижение слуха, но полной глухоты не наступает, поскольку сохраняется костная проводимость. Полная глухота после воспаления среднего уха может развиться лишь в результате перехода гнойного процесса из среднего уха во внутреннее.

Вторичный (секреторный) отит является следствием перекрытия слуховой трубы вследствие воспалительных процессов в носоглотке или разрастания аденоидов. Находящийся в среднем ухе воздух частично поглощается его слизистой оболочкой и создаётся отрицательное давление воздуха, с одной стороны, ограничивающее подвижность барабанной перепонки (следствие – ухудшение слуха), а с другой стороны – способствующее пропотеванию плазмы крови из сосудов в барабанную полость. Последующая организация плазменного сгустка может приводить к развитию спаечного процесса в барабанной полости.

Особое место занимает отосклероз, заключающийся в разрастании губчатой ткани, чаще всего в области ниши овального окна, в результате чего стремечко оказывается замурованным в овальном окне и теряет свою подвижность. Иногда это разрастание может распространяться и на лабиринт внутреннего уха, что приводит к нарушению не только функции звукопроведения, но и звуковосприятия. Проявляется, как правило, в молодом возрасте (15-16 лет) прогрессирующим падением слуха и шумом в ушах, приводя к резкой тугоухости или даже полной глухоте.

Поскольку поражения среднего уха касаются только звукопроводящих образований и не затрагивают звуковоспринимающие нейроэпителиальные структуры, вызываемая ими тугоухость называется кондуктивной. Кондуктивная тугоухость (кроме профессиональной) у большинства больных достаточно успешно корригируется микрохирургическим и аппаратным путем.

2. Нарушения восприятия звука. В этом случае повреждены волосковые клетки кортиева органа, так что нарушено либо преобразование сигнала, либо выделение нейромедиатора. В результате страдает передача информации из улитки в ЦНС и развивается сенсорная тугоухость .

Причина – воздействие внешних или внутренних неблагоприятных факторов: инфекционные заболевания детского возраста (корь, скарлатина, эпидемический цереброспинальный менингит, эпидемический паротит), общие инфекции (грипп, сыпной и возвратный тиф, сифилис); лекарственная (хинин, некоторые антибиотики), бытовая (окись углерода, светильный газ) и промышленная (свинец, ртуть, марганец) интоксикации; травмы; интенсивное воздействие производственного шума, вибрации; нарушение кровоснабжения внутреннего уха; атеросклероз, возрастные изменения.

В силу своего глубокого расположения в костном лабиринте, воспаления внутреннего уха (лабиринтиты), как правило, носят характер осложнений воспалительных процессов среднего уха или мозговых оболочек, некоторых детских инфекций (кори, скарлатины, эпидемического паротита). Гнойные диффузные лабиринтиты в подавляющем большинстве случае заканчиваются полной глухотой, вследствие гнойного расплавления кортиева органа. Результатом ограниченного гнойного лабиринтита является частичная потеря слуха на те или иные тоны, в зависимости от места поражения в улитке.

В некоторых случаях при инфекционных заболеваниях в лабиринт проникают не сами микробы, а их токсины. Развивающийся в этих случаях сухой лабиринтит протекает без гнойного воспаления и обычно не ведёт к гибели нервных элементов внутреннего уха. Поэтому полной глухоты не наступает, но нередко наблюдается значительное понижение слуха вследствие образования рубцов и сращений во внутреннем ухе.

Нарушения слуха возникают вследствие повышения давления эндолимфы на чувствительные клетки внутреннего уха, которое наблюдается при болезни Меньера. Несмотря на то, что повышение давления при этом имеет преходящий характер, снижение слуха прогрессирует не только во время обострений болезни, но и в межприступный период.

3. Ретрокохлеарные нарушения – внутреннее и среднее ухо здоровы, но нарушены либо передача нервных импульсов по слуховому нерву к слуховой зоне коры больших полушарий, либо сама деятельность корковых центров (например, при опухоли головного мозга).

Поражения проводникового отдела слухового анализатора могут возникать на любом его отрезке. Наиболее частыми являются невриты слухового нерва , под которыми понимается воспалительное поражение не только ствола слухового нерва, но и поражения нервных клеток, входящих в состав спирального нервного узла, находящегося в улитке.

Нервная ткань очень чувствительна к любым токсическим воздействиям. Поэтому очень частым следствием воздействия некоторых лекарственных (хинин, мышьяк, стрептомицин, салициловые препараты, антибиотики группы аминогликозидов и мочегонные средства) и токсических (свинец, ртуть, никотин, алкоголь, окись углерода и др.) веществ, бактерийных токсинов является гибель нервных ганглиев спирального узла, которая приводит к вторичной нисходящей дегенерации волосковых клеток кортиева органа и восходящей дегенерации нервных волокон слухового нерва, с формированием полного или частичного выпадения слуховой функции. Причём, хинин и мышьяк имеют такое же сродство к нервным элементам слухового органа, как метиловый (древесный) спирт – к нервным окончаниям в глазу. Снижение остроты слуха в таких случаях может достигать значительной выраженности, вплоть до глухоты, а лечение, как правило, не эффективно. В этих случаях реабилитация больных происходит с помощью тренировки и использования слуховых аппаратов.

Заболевания ствола слухового нерва возникают вследствие перехода воспалительных процессов с мозговых оболочек на оболочку нерва при менингите.

Проводящие слуховые пути в головном мозгу могут страдать при врождённых аномалиях и при различных заболеваниях и повреждениях мозга. Это, прежде всего, кровоизлияния, опухоли, воспалительные процессы мозга (энцефалиты) при менингите, сифилисе и др. Во всех случаях такие поражения обычно не бывают изолированными, а сопровождаются и другими мозговыми расстройствами.

Если процесс развивается в одной половине мозга и захватывает слуховые пути до их перекреста – полностью или частично нарушается слух на соответствующее ухо; выше перекреста – наступает двустороннее понижение слуха, более выраженное на стороне, противоположной поражению, но полной потери слуха не наступает, т. к. часть импульсов поступает по сохранившимся проводящим путям противоположной стороны.

Повреждение височных долей мозга, где располагается слуховая кора, может происходить при кровоизлияниях в мозг, опухолях, энцефалитах. Затрудняется понимание речи, пространственная локализация источника звука и идентификация его временных характеристик. Однако подобные поражения не влияют на способность различать частоту и силу звука. Односторонние поражения коры ведут к понижению слуха на оба уха, больше – на противоположной стороне. Двусторонних поражений проводящих путей и центрального конца слухового анализатора практически не отмечается.

Дефекты органов слуха :

1.Аллозия врождённое полное отсутствие или недоразвитие (например, отсутствие кортиева органа) внутреннего уха.

2. Атрезия – заращение наружного слухового прохода; при врождённом характере обычно сочетается с недоразвитием ушной раковины или полным её отсутствием. Приобретённая атрезия может быть следствием длительного воспаления кожи ушного прохода (при хроническом гноетечении из уха), либо рубцовых изменений после травм. Во всех случаях к значительному и стойкому понижению слуха ведёт лишь полное заращение слухового прохода. При неполных заращениях, когда в слуховом проходе имеется хотя бы минимальная щель, слух обычно не страдает.

3. Оттопыренные ушные раковины, сочетающиеся с увеличением их размера – макротия, или маленькими размерами ушной раковины микротия . Ввидутого, что функциональное значение ушной раковины невелико, все её заболевания, повреждения и аномалии развития, вплоть до полного отсутствия, не влекут за собой существенного нарушения слуха и имеют в основном лишь косметическое значение.

4. Врожденные свищи незаращение жаберной щели, открытой на передней поверхности ушной раковины, несколько выше козелка. Отверстие малозаметно и из него выделяется тягучая, прозрачная жидкость желтого цвета.

5. Врождённые аномалии среднего уха сопутствуют нарушениям развития наружного и внутреннего уха (заполнение барабанной полости костной тканью, отсутствие слуховых косточек, сращивание их).

Причина врождённых дефектов уха чаще всего кроется в нарушениях хода развития зародыша. К таким факторам относится патологическое воздействие на зародыш со стороны организма матери (интоксикации, инфицирование, травмирование плода). Известную роль играет и наследственное предрасположение.

От врождённых дефектов развития следует отличать повреждения органа слуха, возникающие во время родового акта. Например, даже травмы внутреннего уха могут быть следствием сдавления головки плода узкими родовыми путями или последствиями наложения акушерских щипцов при патологических родах.

Врожденная глухота или тугоухость – это либо наследственное нарушение эмбриологического развития периферической части слухового анализатора или отдельных его элементов (наружное, среднее ухо, костная капсула лабиринта, кортиев орган); либо нарушения слуха, связанные с вирусными инфекциями, перенесенными беременной в ранние сроки (до 3-х месяцев) беременности (корь, грипп, паротит); либо последствия поступления в организм беременных токсичных веществ (хинин, салициловые препараты, алкоголь). Врожденное снижение слуха обнаруживается уже в первый год жизни ребенка: он не переходит от «гуления» к произнесению слогов или простых слов, а, напротив, постепенно полностью замолкает. Кроме того, самое позднее, к середине второго года нормальный ребенок научается поворачиваться по направлению к звуковому стимулу.

Роль наследственного (генетического) фактора в качестве причины врождённых нарушений слуха в прежние годы несколько преувеличивалась. Однако этот фактор, несомненно, имеет некоторое значение, т. к. известно, что у глухих родителей дети с врождённым дефектом слуха рождаются чаще, чем у слышащих.

Субъективные реакции на шум. Помимо звуковой травмы, т. е. объективно наблюдаемого повреждения слуха, длительное пребывание в среде, «загрязненной» избыточными звуками («звуковой шум»), ведет к повышению раздражительности, ухудшению сна, головным болям, повышению артериального давления. Дискомфорт, вызываемый шумом, в значительной степени зависит от психологического отношения субъекта к источнику звука. Например, жильца дома может раздражать игра на пианино двумя этажами выше, хотя уровень громкости объективно невелик и у других жильцов жалоб не возникает.

ФИЗИОЛОГИЯ СЛУХОВОГО АНАЛИЗАТОРА

(Слуховая сенсорная система)

Вопросы лекции:

1. Структурно-функциональная характеристика слухового анализатора:

a. Наружное ухо

b. Среднее ухо

c. Внутреннее ухо

2. Отделы слухового анализатора: периферический, проводниковый, корковый.

3. Восприятие высоты, силы звука и локализации источника звука:

a. Основные электрические явления в улитке

b. Восприятие звуков различной высоты

c. Восприятие звуков различной интенсивности

d. Определение источника звука (бинауральный слух)

e. Слуховая адаптация

1. Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи.

Функция слухового анализатора: превращение звуковых волн в энергию нервного возбуждения и слуховое ощущение.

Как любой анализатор, слуховой анализатор состоит из периферического, проводникового и коркового отдела.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ

Превращает энергию звуковых волн в энергию нервного возбуждения – рецепторный потенциал (РП). Этот отдел включает:

· внутреннее ухо (звуковоспринимающий аппарат);

· среднее ухо (звукопроводящий аппарат);

· наружное ухо (звукоулавливающий аппарат).

Составляющие этого отдела объединяются в понятие орган слуха .

Функции отделов органа слуха

Наружное ухо :

a) звукоулавливающая (ушная раковина) и направляющая звуковую волну в наружный слуховой проход;

b) проведение звуковой волны через слуховой проход к барабанной перепонке;

c) механическая защита и защита от температурных воздействий окружающей среды всех остальных отделов органа слуха.

Среднее ухо (звукопроводящий отдел) – это барабанная полость с 3-мя слуховыми косточками: молоточек, наковальня и стремечко.

Барабанная перепонка отделяет наружный слуховой проход от барабанной полости. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, в результате чего происходит вентиляция барабанной полости и уравнивание давления в ней с атмосферным. Если внешнее давление быстро изменяется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Площадь барабанной перепонки (70 мм 2) значительно больше площади овального окна (3,2 мм 2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн в 2 раза, поэтому происходит такое же усиление звуковых волн на овальном окне барабанной полости. Следовательно, среднее ухо усиливает звук примерно в 60-70 раз, а если учитывать усиливающий эффект наружного уха, то эта величина возрастает в 180-200 раз. В связи с этим, при сильных звуковых колебаниях для предотвращения разрушительного действия звука на рецепторный аппарат внутреннего уха, среднее ухо рефлекторно включает «защитный механизм». Он состоит в следующем: в среднем ухе есть 2 мышцы, одна из них натягивает барабанную перепонку, другая – фиксирует стремечко. При сильных звуковых воздействиях эти мышцы при их сокращении ограничивают амплитуду колебаний барабанной перепонки и фиксируют стремечко. Это «гасит» звуковую волну и предохраняет чрезмерное возбуждение и разрушение фонорецепторов кортиевого органа.

Внутреннее ухо : представлено улиткой – спирально закрученным костным каналом (2,5 завитка у человека). Этот канал разделен по всей его длине на три узкие части (лестницы) двумя мембранами: основной мембраной и вестибулярной мембраной (Рейснера).

На основной мембране расположен спиральный орган – орган корти (кортиев орган) – это собственно звуковоспринимающий аппарат с рецепторными клетками – это и есть периферический отдел слухового анализатора.

Геликотрема (отверстие) соединяет верхний и нижний канал на вершине улитки. Средний канал является обособленным.

Над кортиевым органом расположена текториальная мембрана, один конец которой закреплен, а другой остается свободным. Волоски наружных и внутренних волосковых клеток кортиевого органа соприкасаются с текториальной мембраной, что сопровождается их возбуждением, т.е. энергия звуковых колебаний трансформируется в энергию процесса возбуждения.

Строение кортиевого органа

Процесс трансформации начинается с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебания перилимфы вестибулярной лестницы. Эти колебания через геликотрему передаются на перилимфу барабанной лестницы и достигают круглого окна, выпячивая его в сторону среднего уха (это не дает затухнуть звуковой волне при прохождении по вестибулярному и барабанному каналу улитки). Колебания перилимфы передаются на эндолимфу, что вызывает колебания основной мембраны. Волокна основной мембраны приходят в колебательные движения вместе с рецепторными клетками (наружными и внутренними волосковыми клетками) кортиевого органа. При этом волоски фонорецепторов контактируют с текториальной мембраной. Реснички волосковых клеток деформируются, это вызывает формирование рецепторного потенциала, а на его основе – потенциала действия (нервный импульс), который проводится по слуховому нерву и передается в следующий отдел слухового анализатора.

ПРОВОДНИКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Проводниковый отдел слухового анализатора представлен слуховым нервом . Он образован аксонами нейронов спирального ганглия (1-й нейрон проводящего пути). Дендриты этих нейронов иннервируют волосковые клетки кортиевого органа (афферентное звено), аксоны образуют волокна слухового нерва. Волокна слухового нерва заканчиваются на нейронах ядер кохлеарного тела (VIII пара ч.м.н.) (второй нейрон). Затем, после частичного перекреста, волокна слухового пути идут в медиальные коленчатые тела таламуса, где опять происходит переключение (третий нейрон). Отсюда возбуждение поступает в кору (височная доля, верхняя височная извилина, поперечные извилины Гешля) – это проекционная слуховая зона коры.



КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Представлен в височной доле коры больших полушарий – верхняя височная извилина, поперечные височные извилины Гешля . С этой проекционной зоны коры связаны корковые гностические слуховые зоны – зона сенсорной речи Вернике и праксическая зона – моторный центр речи Брока (нижняя лобная извилина). Содружественная деятельность трех зон коры обеспечивает развитие и функцию речи.

Слуховая сенсорная система имеет обратные связи, которые обеспечивают регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей, которые начинаются от нейронов «слуховой» коры и последовательно переключаются в медиальных коленчатых телах таламуса, нижних буграх четверохолмия среднего мозга с формированием тектоспинальных нисходящих путей и на ядрах кохлеарного тела продолговатого мозга с формированием вестибулоспинальных путей. Это обеспечивает в ответ на действие звукового раздражителя формирование двигательной реакции: поворота головы и глаз (а у животных – ушных раковин) в сторону раздражителя, а также повышение тонуса мышц-флексоров (сгибание конечностей в суставах, т.е. готовность к прыжку или бегу).

Слуховая кора

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКОВЫХ ВОЛН, КОТОРЫЕ ВОСПРИНИМАЮТСЯ ОРГАНОМ СЛУХА

1. Первой характеристикой звуковых волн является их частота и амплитуда.

Частота звуковых волн определяет высоту звука!

Человек различает звуковые волны с частотой от 16 до 20 000 Гц (это соответствует 10-11 октавам). Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (ультразвуки) человеком не ощущаются!

Звук, который состоит из синусоидальных или гармонических колебаний, называют тоном (большая частота – высокий тон, малая частота – низкий тон). Звук, состоящий из не связанных между собой частот, называют шумом .

2. Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила или интенсивность.

Сила звука (его интенсивность) совместно с частотой (тоном звука) воспринимается как громкость. Единица измерения громкости – бел = lg I/I 0 , однако в практике чаще используют децибел (dB) (0,1 бела). Децибел – это 0,1 десятичного логарифма отношения интенсивности звука к пороговой его интенсивности: dB = 0,1 lg I/I 0 . Максимальный уровень громкости, когда звук вызывает болевые ощущения, равен 130-140 дБ.

Чувствительность слухового анализатора определяется минимальной силой звука, вызывающей слуховые ощущения.

В области звуковых колебаний от 1000 до 3000 Гц, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот называется речевой зоной (1000-3000 Гц). Абсолютная звуковая чувствительность в этом диапазоне равна 1*10 -12 вт/м 2 . При звуках выше 20 000 Гц и ниже 20 Гц абсолютная слуховая чувствительность резко снижается – 1*10 -3 вт/м 2 . В речевом диапазоне воспринимаются звуки, имеющие давление меньше 1/1000 бара (бар равен 1/1 000 000 части нормального атмосферного давления). Исходя из этого, в передающих устройствах, чтобы обеспечить адекватное понимание речи, информация должна передаваться в речевом диапазоне частот.

МЕХАНИЗМ ВОСПРИЯТИЯ ВЫСОТЫ (ЧАСТОТЫ), ИНТЕНСИВНОСТИ (СИЛЫ) И ЛОКАЛИЗАЦИИ ИСТОЧНИКА ЗВУКА (БИНАУРАЛЬНЫЙ СЛУХ)

Восприятие частоты звуковых волн

ВСПОМНИТЕ

Вопрос 1. Какое значение для человека имеет слух?

С помощью слуха человек воспринимает звуки. Слух дает возможность воспринимать информацию на значительном расстоянии. Со слуховым анализатором связана членораздельная речь. Человек, глухой от рождения или потерявший слух в раннем детстве, теряет способность произносить слова.

Вопрос 2. Каковы основные части любого анализатора?

Любой анализатор состоит из трех основных звеньев: рецепторов (периферическое воспринимающее звено), нервных путей (проводниковое звено) и мозговых центров (центральное обрабатывающее звено). Высшие отделы анализаторов расположены в коре больших полушарий, причем каждый из них занимает определенную область.

ВОПРОСЫ К ПАРАГРАФУ

Вопрос 1. Каково строение слухового анализатора?

Слуховой анализатор включает в себя орган слуха, слуховой нерв и центры мозга, анализирующие слуховую информацию.

Вопрос 2. Какие расстройства слуха вам известны и каковы их основные причины?

Иногда в наружном слуховом проходе скапливается слишком много ушной серы и образуется пробка, снижающая остроту слуха. Удалять такую пробку нужно очень осторожно, так как можно повредить барабанную перепонку. Из носоглотки в полость среднего уха могут проникать различные виды возбудителей, способные вызывать воспаление среднего уха - отит. При правильном и своевременном лечении отит быстро проходит и не отражается на чувствительности слуха. Также к нарушению слуха могут привести механические травмы - ушибы, удары, воздействия сверхсильных звуковых раздражителей.

1. Докажите, что «орган слуха» и «слуховой анализатор» - разные понятия.

Органом слуха является ухо, которое состоит из трех отделов: наружного, среднего и внутреннего уха. Слуховой анализатор включает в себя слуховой рецептор (он находится во внутреннем ухе), слуховой нерв и слуховую зону коры больших полушарий, находящуюся в височной доле.

2. Сформулируйте основные правила гигиены слуха.

Чтобы не допустить снижение остроты слуха и защитить органы слуха от вредного влияния внешней среды, проникновения вирусов и развития опасных заболеваний, придерживаться основных правил гигиены органов слуха и следить за состоянием своих ушей, чистотой и состоянием слуха нужно постоянно и обязательно.

Гигиена органов слуха говорит о том, что уши необходимо чистить не чаще двух раз в неделю, если они сильно не загрязнены. Слишком тщательно от серы, что находится в слуховом канале, избавляться не нужно: она защищает организм человека от проникновения в него болезнетворных микроорганизмов, выводит мусор (чешуйки кожи, пыль, грязь), увлажняет кожу.

ПОДУМАЙТЕ!

Какие особенности слухового анализатора позволяют человеку определить расстояние до источника звука и направление на него?

Важным свойством слухового анализатора является его способность определять направление звука, получившая название ототопики. Ототопика возможна только при наличии нормально слышащих двух ушей, т. е. при хорошем бинауральном слухе. Определение направления звука обеспечивается следующими условиями: 1) разницей в силе звука, воспринимаемой ушами, поскольку ухо, которое находится ближе к источнику звука, воспринимает его более громким. Здесь имеет значение и то, что одно ухо оказывается в звуковой тени; 2) восприятием минимальных промежутков времени между поступлением звука к одному и другому уху. У человека порог этой способности различать минимальные промежутки времени равен 0,063 мс. Способность локализовать направление звука пропадает, если длина звуковой волны меньше двойного расстояния между ушами, которое равно в среднем 21 см. Поэтому ототопика высоких звуков затруднена. Чем больше расстояние между приемниками звука, тем точнее определение его направления; 3) способность воспринимать разность фаз звуковых волн, поступающих в оба уха.

В горизонтальной плоскости человек различает направление звука наиболее точно. Так, направление резких ударных звуков, например выстрелов, определяется с точностью до 3-4°. Ориентация в определении направления источника звука в сагиттальной плоскости зависит в определенной мере от ушных раковин.

Строение слухового анализатора - тема нашей статьи. Как взаимосвязаны его строение и функции? Какое значение имеет слух для человека? Давайте разберемся вместе.

Что такое сенсорные системы

Каждую секунду наш организм воспринимает информацию из окружающей среды и соответствующим образом реагирует на нее. Это возможно благодаря сенсорным, или анализаторным системам. Строение слухового анализатора аналогично другим подобным структурам.

Всего в организме человека различают пять сенсорных систем. Кроме слуховой к ним относятся зрительная, обонятельная, осязательная, вкусовая. Ученые утверждают, что человек обладает еще и шестым чувством. Речь идет об интуиции - умении предвидеть события. Но структура, которая отвечает за формирование этого чувства, пока неизвестна.

Принцип работы анализаторов

Если описать строение слухового анализатора кратко, то можно назвать три его отдела. Они называются периферический, проводниковый и центральный. Такой план строения имеют все сенсорные системы.

Периферический отдел представлен рецепторами. Это чувствительные образования, которые воспринимают различные виды раздражений и преобразуют их в импульсы. Нервные волокна, которые представляют проводниковый отдел, передают информацию головной мозг. Здесь происходит ее анализ и формирование ответной реакции на раздражение.

Строение и функции слухового анализатора: кратко

Как происходит восприятие звуковых колебаний? Строение слухового анализатора подобно всем остальным. Его периферический отдел представлен ухом. Проводниковый - это слуховой нерв. По нему нервные импульсы продвигаются к центральной части. Это слуховая зона коры конечного мозга.

Способность к адаптации

Общим свойством для всех сенсорных систем является их способность приспосабливать уровень своей чувствительности к интенсивности силы действия раздражителя. Это свойство еще называют адаптацией. И строение слухового анализатора человека - не исключение.

В чем же заключается суть процесса адаптации? Дело в том, что чувствительность слуховых рецепторов может регулироваться в зависимости от степени воздействия раздражителя. Если сигнал сильный, уровень восприятия снижается, и наоборот. К примеру, вспомните, как мы постепенно начинаем различать тихие звуки через определенное время.

Для организма человека адаптация имеет защитное значение. Также она повышает функциональные возможности анализаторов путем длительных повторений. Так происходит тренировка слуха у профессиональных музыкантов. Люди, которые продолжительное время работают в условиях интенсивного шума или живут рядом с железной дорогой, через определенный период перестают его замечать. Это также проявление адаптации.

Как и все сенсорные системы, слуховая компенсируется функционированием остальных. Ярким примером этого является величайший композитор Людвиг Бетховен. Он был признанным мастером уже в молодом возрасте, а к тридцати годам его глухота начала быстро прогрессировать. Но даже когда Бетховен полностью лишился слуха, он продолжал сочинять музыкальные шедевры. Он помещал в рот небольшую деревянную палочку и прижимал ее к музыкальному инструменту. Таким образом осязательная сенсорная система компенсировала слуховой анализатор. А отсутствие зрения частично заменяется развитым слухом и обонянием.

Значение слуха

Возможно ли жить глухим? Естественно, людей с нарушениями слуха огромное количество. Несмотря на то, что больше всего информации человек воспринимает с помощью зрения, восприятие звуков также имеет большое значение.

Основные принципы строения слухового анализатора делают его работу непрерывной. Мы слышим даже во время сна. Слух позволяет воспринимать информацию на расстоянии, передавать опыт в поколениях, является средством общения.

Что такое звуковое давление

Все ли звуки мы способны воспринимать? Далеко нет. В процессе эволюции сенсорные системы приспособились к анализу информации только определенного диапазона. Это является защитой мозга от перегрузок.

Звуки формируются из колебаний воздуха. Строение слухового анализатора обеспечивает их превращение в нервные импульсы, которые анализируются в головном мозге. Амплитуту таких колебаний называют звуковым давлением. Ее единицей измерения является децибел. При обычном разговоре эта величина равна 60 дБ.

Частоту звуковых колебаний измеряют в герцах. Мы воспринимаем очень узкий диапазон - от 16 до 20 кГц. Другие колебания мы не способны слышать. Если частота колебаний ниже 16 Гц, они называются инфразвуком. В природе его используют для общения киты и слоны.

Ультразвук возникает при частоте колебаний более 20 кГц. Летучие мыши используют его для ориентации в ночное время суток. Они издают звуки, которые отражаются от предметов. Такой способ называется эхолокацией.

Орган слуха

Слуховой анализатор, строение и функции которого мы рассматриваем в нашей статье, состоит из трех отделов. Периферический представлен ухом. А правильнее сказать, органом слуха. Далее следует проводниковый отдел. Это слуховой нерв. Он передает информацию в центральный отдел, представленный слуховой зоной коры конечного мозга.

Внешнее ухо

В чем заключаются особенности анатомического строения периферического отдела слухового анализатора? Прежде всего в том, что он также состоит из трех частей. Это внешнее, среднее и внутреннее ухо.

Элементами первой части яляются ушная раковина и внешний слуховой проход. Они улавливают и направляют звуковые колебания к внутренним отделам. Ушная раковина образована эластичной хрящевой тканью, которая формирует характерные завитки.

Внешний слуховой проход имеет длину около 2,5 см, заканчиваясь барабанной перепонкой. Его кожа богата видоизмененными потовыми железами. Они выделяют особое вещество - ушную серу. Вместе с волосками она задерживает пыль и микроорганизмы.

Слуховые косточки

Строение органа слуха и слухового анализатора продолжает среднее ухо. Звуковые колебания передаются на барабанную перепонку, вызывая ее вибрацию. Чем выше звук, тем колебания интенсивнее.

Место нахождения среднего уха - черепа. Его границами являются две перепонки - барабанная и овального окна. Здесь колебания передаются на слуховые косточки. Они имеют характерную форму, которая определяет их названия: молоточек, стремя и наковальня. Слуховые косточки анатомически соединены между собой. Молоточек узкой частью крепится к наковальне. Последняя подвижно соединена со стременем. Колебания барабанной перепонки через слуховые косточки поступают к перепонке овального окна.

В этом отделе среднее ухо анатомически соединяется с носоглоткой при помощи евстахиевой, или слуховой трубы. Такое строение позволяет проникать сюда воздуху из окружающей среды. Поэтому давление на барабанную перепонку одинаково с обеих сторон.

Внутреннее ухо

Уже много сказано о строении и функциях слухового анализатора, а о самих рецепторах - ни слова. Это не ошибка. Их содержит внутреннее ухо. Его месторасположением является височная кость. Это сложная система извитых канальцев и полостей. Они заполнены специальной жидкостью.

От овального окна строение слухового анализатора продолжает канал, состоящий из 2,5 оборотов. Это улитка, в которой находятся слуховые рецепторы, или волосковые клетки. В улитке различают основную и покровную мембраны. Первая образована из поперечных волокон, имеющих разную длину. Их очень много - до 24 тысяч. Покровная мембрана нависает над волосковыми клетками. В результате образуется звуковоспринимающий аппарат, который называется кортиев орган. Он состоит из мембран и слуховых рецепторов.

Механизм действия

Когда перепонка овального окна начинает колебаться, это раздражение передается жидкости улитки. В результате возникает явление резонанса. Начинаются колебания волокон разной длины и слуховых рецепторов.

Этот процесс имеет свои закономерности. Сильный звук вызывает большой размах колебательных движений волокон. При высоком тоне звука начинают резонировать короткие волокна.

Далее механическая энергия колебательных движений превращается в электрическую. Так возникают нервные импульсы. Их дальнейшее передвижение происходит уже с помощью нейронов и их отростков. Они поступают в слуховую зону коры конечного мозга, который находится в височной доле.

Анализ звука - также важная функция слухового анализатора. Головной мозг определяет силу звука, его характер, высоту, направление в пространстве. Воспринимается также интонация слов. В результате формируется звуковой образ.

Даже с закрытыми глазами мы можем определить, из какого направления слышен сигнал. Благодаря чему это возможно? Если звук поступает в оба уха, мы воспринимает звук посредине. А точнее - спереди и сзади. Если же в одно ухо звук попадает раньше, чем в другое, то звук воспринимается справа или слева.

Приходилось ли вам замечать, что один и тот же звук люди воспринимают по-разному? Для одного телевизор работает слишком тихо, другой же ничего не слышит. Оказывается, каждый человек имеет свой порог слуховой чувствительности. От чего зависит данный показатель? Он определяется не только строением, функциями и возрастными особенностями слухового анализатора. Наиболее острым восприятием звуков обладают люди в возрасте от 15 до 20 лет. Далее острота слуха постепенно понижается.

Существует также такое понятие, как порог слышимости. Это самая маленькая сила звука, при которой он начинает восприниматься. Данный показатель также определяется индивидуальными особенностями.

Процесс формирования слухового анализатора

Когда человек начинает воспринимать звуки? Сразу после рождения. Ответной реакцией на звуки в этот период является проявление условных рефлексов. Это продолжается около двух месяцев. Теперь организм уже реагирует условнорефлекторно. К примеру, мамин голос становится знаком о кормлении.

На третьем месяце малыш уже различает тон, тембр, высоту и направления звуков. К году, как правило, ребенок уже понимает смысловую окраску слов.

Гигиена слуха

Строение слухового анализатора хотя и совершенно от природы, но требует постоянного внимания. Самые элементарные правила гигиены позволят вам надолго сохранить возможность восприятия звуков.

Самая простая причина ухудшения звука - накопление серы в наружном слуховом проходе. Если не удалять это вещество, могут образоваться так называемые пробки. Чтобы предупредить это, серу нужно периодически удалять.

Серьезно нужно отнестись и к последствиям вирусных заболеваний. Самый элементарный ринит, ангина или грипп могут привести к воспалению в среднем ухе. Такое заболевание называется отит. В среднее ухо опасные микроорганизмы проникают из носоглотки через слуховую трубу.

Нарушение слуха может быть вызвано и чисто механическими причинами. Одна из них - повреждение барабанной перепонки. Оно может быть вызвано и действием острого предмета, и чрезмерно громким звуком. К примеру, взрывом. Если вы ожидаете, что это может произойти, необходимо открыть рот. Такое действие делает одинаковым давление по обе стороны от барабанной перепонки.

Но вернемся к ежедневной жизни. Мы не задумываемся, что систематическое использование наушников, постоянный бытовой и транспортный шум постепенно снижают эластичность барабанной перепоки. В результате острота слуха значительно падает. А ведь процесс этот является необратимым. Только представьте, что пневматическая дрель работает с интенсивностью звука до 100 децибел, а дискотека - 110!

Итак, слуховая сенсорная система человека состоит из трех отделов, таких как:

  • Периферический . Представлен органом слуха: внешним, средним и внутренним ухом. Завитки ушной раковины направляют колебания воздуха в наружный слуховой проход, оттуда - на специализированные косточки (молоточек, стемя и наковальню), перепонку овального окна и улитку. В последней структуре находятся волосковые клетки. Это слуховые рецепторы, которые преобразуют механические колебания в нервные импульсы.
  • Проводниковый . Это слуховой нерв, по которому передаются импульсы.
  • Центральный . Находится в коре большого мозга. Здесь информация анализируется, благодаря чему формируются звуковые ощущения.

Периферическим отделом слухового анализатора являются рецепторные волосковые клетки кортиева органа (орган Корти), находящегося в улитке. Слуховые рецепторы (фонорецепторы) от­носятся к механорецепторам, являются вторичными и представле­ны внутренними и наружными волосковыми клетками, которые расположены на основной мембране внутри среднего канала внут­реннего уха. Различают внутреннее ухо (звуковоспринимающий аппарат), среднее ухо (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат).

Наружное ухо за счет ушной раковины обеспечивает улавли­вание звуков, концентрацию их в направлении наружного слухово­го прохода и усиление интенсивности звуков. Наружное ухо защи­щает барабанную перепонку от механических и температурных воздействий внешней сре^ды. Наружное ухо обеспечивает начало восприятия звука - улавливание звуковых волн, которые приво­дят в движение барабанную перепонку.

Среднее ухо представляет собой барабанную полость, где рас­положены три слуховые косточки: молоточек, наковальня и стре­мечко. От наружного слухового прохода среднее ухо отделено ба­рабанной перепонкой. Слуховые косточки воспринимают звуковые колебания от наружного уха с помощью барабанной перепонки и вместе с ним усиливают звуковые волны в 200 раз. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполня-


ет евстахиева труба, которая соединяет полость среднего уха с глот­кой. При глотании труба открывается, вентилируя полость средне­го уха и уравнивая давление в нем с атмосферным. Если внешнее давление быстро меняется (быстрый подъем на высоту или спуск), а глотания не происходит, то разность давлений между атмосфер­ным воздухом и воздухом в барабанной полости приводит к натя­жению барабанной перепонки и возникновению неприятных ощущений, снижению восприятия звуков. Поэтому при спуске, например на самолете, целесообразно периодически производить глотание (слюны, напитков).

Внутреннее ухо - улитка, спирально закрученный костный канал, имеющий 2,5 завитка, который разделен основной мембра­ной и мембраной Рейснера на три узких канала (лестницы). Сред­ний канал заполнен эндолимфой. Внутри этого канала на основной мембране расположен кортиев орган с рецепторными клетками.

Проводниковый отдел слухового анализатора начинается би­полярными нейронами, расположенным в спиральном ганглии улит­ки (1-й нейрон), аксоны которого (слуховой нерв) заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (2-й нейрон). Аксоны этих нейронов идут к третьему нейрону в ме­диальном коленчатом теле метаталамуса, отсюда возбуждение по­ступает в кору большого мозга (4-й нейрон).

Корковый отдел слухового анализатора находится в верхней части височной доли коры большого мозга (височная доля).

Восприятие высоты звука согласно резонансной теории Гельмгольца обусловлено тем, что каждое волокно основной мемб­раны настроено на звук определенной частоты. Звуки высокой час­тоты воспринимаются короткими волокнами основной мембраны, расположенными ближе к основанию улитки. Звуки низкой часто­ты воспринимаются длинными волнами основной мембраны, рас­положенными ближе к верхушке улитки.

Эта теория получила экспериментальное подкрепление. При действии звука в состояние колебаний вступает вся основная мем­брана, однако максимальное отклонение ее происходит только в определенном месте (теория места). При увеличении частоты зву­ковых колебаний максимальное отклонение основной мембраны смещается к основанию улитки, где располагаются более короткие волокна основной мембраны - у коротких волокон возможна бо­лее высокая частота колебаний. Возбуждение волосковых клеток именно этого участка мембраны передается на волокна слухового нерва в виде определенного числа импульсов, частота следования которых ниже частоты звуковых волн (лабильность нервных воло­кон не превышает 800-1000 Гц). Частота воспринимаемых звуко-


вых волн достигает 20 000 Гц. Это пространственный тип кодиро­вания высоты звуковых сигналов. При действии более низких зву­ков, примерно до 800 Гц, кроме пространственного кодирования происходит еще и временное (частотное) кодирование, при ко­тором информация передается также по определенным волокнам слухового нерва, но в виде импульсов, частота следования которых соответствует частоте колебаний звуковых волн.

Восприятие интенсивности звука осуществляется за счет изменения частоты импульсов и числа возбужденных рецепторов. Наружные и внутренние волосковые рецепторные клетки имеют разные пороги возбуждения. Внутренние клетки возбуждаются при большей силе звука, чем наружные. Кроме того, у различных внут­ренних рецепторов пороги возбуждения также различны. Поэтому с увеличением силы звука увеличивается число возбужденных ре­цепторов и, естественно, нейронов в ЦНС; при уменьшении силы звука наблюдаются противоположные реакции рецепторов и ней­ронов ЦНС.

ВЕСТИБУЛЯРНЫЙ АНАЛИЗАТОР

Вестибулярный анализатор играет важную роль в регуляции мышечного тонуса и сохранении позы организма, он обеспечивает возникновение акселерационных ощущений, т. е. при прямолиней­ном и вращательном ускорении движения тела, а также при изме­нениях положения головы.

Периферический отдел вестибулярного анализатора - это вестибулярный аппарат, расположенный в лабиринте пирамиды височной кости, он состоит из трех полукружных каналов и пред­дверия. Полукружные каналы расположены в трех взаимно перпен­дикулярных плоскостях: фронтальной, сагиттальной и горизонталь­ной - и открываются своими устьями в преддверие. Преддверие состоит из двух мешочков*: круглого (саккулюс) и овального (утри-кулюс). Один конец каждого канала имеет расширение (ампулу). Все эти структуры состоят из тонких перепонок и образуют пере­пончатый лабиринт, внутри которого находится эндолимфа, вокруг перепончатого лабиринта и между костным его футляром имеется перилимфа, которая переходит в перилимфу органа слуха. В мешоч­ках преддверия и ампулах полукружных каналов имеются волос­ковые рецепторные клетки. Рецепторные клетки преддверия покрыты отолитовой мембраной, представляющей собой желе­образную массу, содержащую кристаллы карбоната кальция. В ам­пулах полукружных каналов желеобразная масса не содержит

солей кальция и называется листовидной мембраной (купулой). Волоски рецепторных клеток пронизывают эти мембраны. Возбуж­дение волосковых клеток происходит вследствие скольжения мем­браны по волоскам и изгибания их.

Адекватными раздражителями для волосковых клеток пред­дверия являются ускорение или замедление прямолинейного дви­жения тела, а также наклоны головы; для волосковых клеток по­лукружных каналов - ускорение или замедление вращательного движения в какой-либо плоскости. Импульсы, возникающие в волос­ковых рецепторах, поступают в проводниковый отдел анализатора.

Проводниковый отдел начинается дендритами биполярных нейронов вестибулярного ганглия, расположенного во внутреннем слуховом проходе. Аксоны этих нейронов в составе вестибулярно­го нерва идут ко второму нейрону, находящемуся в вестибулярных ядрах продолговатого мозга. Третий нейрон проводникового отде­ла расположен в ядрах зрительного бугра, от которого возбужде­ние поступает к третьему отделу анализатора.

Центральный отдел вестибулярного анализатора локализу­ется в височной области коры большого мозга. После переработки афферентной импульсации в различных отделах ЦНС вносится коррекция по регуляции мышечного тонуса, обеспечивающего со­хранение естественной позы организма.

ДРУГИЕ АНАЛИЗАТОРЫ