Что такое спин частицы простыми словами. Что такое спин


1/2, для фотона 1, для p - и К-мезонов 0.

Спином наз. также собств. момент кол-ва движения , мол. системы; в этом случае спин системы определяется как векторная сумма спинов отдельных частиц: S s = S. Так, спин ядра равен целому или полуцелому числу (обозначается обычно I) в зависимости от того, включает ли ядро четное или нечетное число и . Напр., для 1 Н I = 1/2, для 10 В I = 3, для 11 В I = 3/2, для 17 О I = 5/2, для 16 О I = 0. Для Не в основном состоя нии полный электронный спин S = 0, в первом S = 1. В совр. теоретич. физике, гл. обр. в теории , спином часто называют полный момент кол-ва движения частицы, равный сумме орбитального и собств. моментов.

Концепция спина введена в 1925 Дж. Уленбеком и С. Гаудсмитом, к-рые для интерпретации эксперим. данных о расщеплении пучка в магн. поле предположили, что можно рассматривать Как вращающийся вокруг своей оси волчок с проекцией на направление поля, равной В том же году В. Паули ввел понятие спина в математич. аппарат нерелятивистской и сформулировал принцип запрета, утверждающий, что две тождеств. частицы с полуцелым спином не могут одновременно находиться в системе в одном и том же (см. ). Согласно подходу В. Паули, существуют s 2 и s z , к-рые обладают собств. значениями ђ 2 s(s + 1) и ђs z соотв. и действуют нат. наз. спиновые части волновой ф-ции a и b (спин-функции) так же, как орбитального момента кол-ва движения I 2 и I z действуют на пространств. часть волновой ф-ции Y (r), где r-радиус-вектор частицы. s 2 и s z подчиняются тем же правилам коммутации, что и I 2 и I z .

Спиновый . В Брейта-Паули Н ВР входят два члена, линейно зависящие от компонент векторного потенциала А, определяющего внеш. магн. поле:


Для однородного поля А = 1/2 В x r , знак x означает векторное произведение, и


Где -магнетон . Векторная величина наз. магн. моментом частицы с зарядом е и массой т (в данном случае-электрона), векторная же величина получила назв. спинового магн. момента. Отношение коэффициентов перед s и l наз. g-фактор ом частицы. Для 1 Н (спин I = 1/2) g-фактор равен 5,5854, для ядра 13 С с тем же спином I = 1/2 g-фактор равен 1,4042; возможны и отрицат. g-факторы, напр.: для ядра 29 Si g-фактор равен - 1,1094 (спин равен 1/2). Экспериментально определяемая величина g-фактора составляет 2,002319.

Как для одного , так и для системы или др. частиц спином S ориентируется относительно направления однородного поля. Проекция спина S z на направление поля принимает 2S + 1 значение: - S, - S + 1, ... , S. Число разл. проекций спина наз. системы со спином S.

Магн. поле, действующее на или ядро в , м.б. не только внешним, оно может создаваться и др. либо возникать при вращении системы заряженных частиц как целого. Так, взаимод. магн. поля, создаваемого i, с ядром v приводит к появлению в гамильтониане члена вида:

где n v - единичный в направлении радиуса-вектора ядра R v , Z v и М v -заряд и масса ядра. Члены вида I v ·I i отвечают , члены вида I v ·s i - . Для атомных и мол. систем наряду с указанными возникают и члены, пропорциональные (s i ·s j), (I v ·I m ) и т.п. Эти члены обусловливают расщепление вырожденных энергетич. уровней, а также приводят к разл. сдвигам уровней, что определяет тонкую структуру и сверхтонкую структуру (см. , ).

Экспериментальные проявления спина. Наличие отличного от нуля спина электронной подсистемы приводит к тому, что у в однородном магн. поле наблюдается расщеп-ление уровней энергии, причем на величину этого расщепления влияет хим. (см. ). Наличие ненулевых спинов также приводит к расщеплению уровней, причем это расщепление зависит от экранирования внеш. поля ближайшим к данному ядру окружением (см. ). Спин-орбитальное взаимод. приводит к сильным расщеплениям уровней электронных состояний, достигающим величин порядка неск. десятых эВ и даже неск. единиц эВ. Особенно сильно оно проявляется у тяжелых элементов, когда становится невозможным говорить о том или ином спине или , а можно говорить лишь о полном моменте импульса системы. Более слабыми, но тем не менее отчетливо устанавливаемыми при исследовании спектров являются спин-вращательные и .

Для конденсир. сред наличие спинов частиц проявляется в магн. св-вах этих сред. При определенной т-ре возможно возникновение упорядоченного состояния спинов частиц ( , ), находящихся, напр., в узлах кристаллич. решетки, а следовательно, и связанных со спинами магн. моментов, что ведет к появлению у системы сильного парамагнетизма (ферромагнетизма, антиферромагнетизма). Нарушение упорядоченности спинов частиц проявляется в виде спиновых волн (см. ). Взаимод. собственных магн. моментов с упругими колебаниями среды наз. спин-фонон-ным взаимод. (см. ); оно определяет спин-решеточную и спин-фононное поглощение звука.

Определение 1

Спин электрона (и других микрочастиц) -- это квантовая величина, у которой нет классического аналога. Это внутреннее свойство электрона, которое можно уподобить заряду или массе. Понятие спина было предложено американскими физиками Д. Уленбеком и С. Гаудсмитом для того, чтобы объяснить существование тонкой структуры спектральных линий. Ученые предположили, что электрон имеет собственный механический момент импульса , который не связан с движением электронам в пространстве который был назван спином.

Если считать, что электрон имеет спин (собственный механический момент импульса (${\overrightarrow{L}}_s$)), то значит должен иметь собственный магнитный момент (${\overrightarrow{p}}_{ms}$). В соответствии с общими выводами квантовой физики спин квантуется как:

где $s$ -- спиновое квантовое число. Проводя аналогию с механическим моментом импульса, проекция спина ($L_{sz}$) квантуется таким образом, что число ориентаций вектора ${\overrightarrow{L}}_s$ равно $2s+1.$ В опытах Штерна и Герлаха ученые наблюдали две ориентации, то $2s+1=2$, следовательно, $s=\frac{1}{2}$.

При этом проекция спина на направление внешнего магнитного поля определена формулой:

где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число.

Получилось, что экспериментальные данные привели к необходимости введения дополнительной внутренней степени свободы. Для полного описания состояния электрона в атоме необходимы: главное, орбитальное, магнитное и спиновое квантовые числа.

Позднее Дирак показал, что наличие спина следует из полученного им релятивистского волнового уравнения.

Атомы первой валентной группы периодической системы имеют валентный электрон, находящийся в состоянии с $l=0$. При этом момент импульса всего атома равен спину валентного электрона. Поэтому когда обнаружили для подобных атомов, пространственное квантование момента импульса атома в магнитном поле это стало доказательством существования спина только двух ориентаций во внешнем поле.

Спиновое квантовое число, отличаясь от других квантовых чисел, является дробным. Количественную величину спина электрона можно найти в соответствии с формулой (1):

Для электрона имеем:

Иногда говорят, что спин электрона ориентирован по направлению или против направления напряженности магнитного поля. Такое высказывание является неточным. Так как при этом на самом деле имеется в виду направление его составляющей $L_{sz}.$

где ${\mu }_B$ -- магнетон Бора.

Найдем отношение проекций $L_{sz}$ и $p_{ms_z}$, применяя формулы (4) и (5), имеем:

Выражение (6) называют спиновым гиромагнитным отношением. Оно в два раза превышает орбитальное гиромагнитное отношение. В векторной записи гиромагнитное отношение записывают как:

Опыты Эйнштейна и де Гааза определили спиновое гиромагнитное отношение для ферромагнетиков . Это дало возможность определить спиновую природу магнитных свойств ферромагнетиков и получить теорию ферромагнетизма.

Пример 1

Задание: Найдите численные значения: 1) собственного механического момента импульса (спина) электрона, 2) проекции спина электрона на направление внешнего магнитного поля.

Решение:

    В качестве основания для решения задачи используем выражение:

    где $s=\frac{1}{2}$. Зная величину $\hbar =1,05\cdot {10}^{-34}Дж\cdot с$, проведем вычисления:

    В качестве основы для решения задачи используем формулу:

    где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число. Следовательно, можно провести вычисления:

Ответ: $L_s=9,09\cdot {10}^{-35}{\rm Дж}\cdot {\rm с},\ L_{sz}=\pm 5,25\cdot {10}^{-35}Дж\cdot с.$

Пример 2

Задание: Каков спиновый магнитный момент электрона ($p_{ms}$) и его проекция ($p_{ms_z}$) на направление внешнего поля?

Решение:

Спиновый магнитный момент электрона может быть определен из гиромагнитного соотношения как:

Собственный механический момента импульса (спина) электрона можно найти как:

где $s=\frac{1}{2}$.

Подставим выражение для спина электрона в формулу (2.1), имеем:

Используем известные для электрона величины:

поведем вычисление магнитного момента:

Из опытов Штерна и Герлаха получено, что $p_{ms_z}$ (проекция собственного магнитного момента электрона) равна:

Вычислим $p_{ms_z}$ для электрона:

Ответ: $p_{ms}=1,6\cdot {10}^{-23}A\cdot м^2,\ p_{ms_z}=9,27\cdot {10}^{-24}A\cdot м^2.$

Как в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения теряет здесь свой непосредственный смысл в виду одновременной неизмеримости радиуса-вектора и импульса.

Мы видели в § 28, что задание значений l к определяет угловую зависимость волновой функции частицы, а тем самым - все ее свойства симметрии по отношению к вращениям. В наиболее общем виде формулировка этих свойств сводится к указанию закона преобразования волновых функций при поворотах системы координат.

Неизменной волновая функция системы частиц (с заданными значениями момента L и его проекции М) остается лишь при повороте системы координат вокруг оси . Всякий же поворот, меняющий направление оси , приводит к тому, что проекция момента на ось уже не будет иметь определенного значения. Это значит, что в новых координатных осях волновая функция превратится, вообще говоря, в суперпозицию (линейную комбинацию) функций, отвечающих различным возможным (при заданном L) значениям М. Можно сказать, что при поворотах системы координат функций преобразуются друг через друга. Закон этого преобразования, т. е. коэффициенты суперпозиции (как функции углов поворота координатных осей), полностью определяется заданием значения L. Таким образом, момент приобретает смысл квантового числа, классифицирующего состояния системы по их трансформационным свойствам по отношению к вращениям системы координат.

Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость.

Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную - проекцию ее внутреннего момента на некоторое избранное направление в пространстве.

Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной».

Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу и поэтому принципиально не допускает классической интерпретации.

Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s.

Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина.

Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных - координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось ) и пробегающей ограниченное число дискретных значений (которые мы будем обозначать далее буквой ).

Пусть - такая волновая функция. По существу она представляет собой совокупность нескольких различных функций координат, отвечающих различным значениям а; об этих функциях мы будем говорить как о спиновых компонентах волновой функции. При этом интеграл

определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема имея произвольное значение а, есть

Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную . Другими словами, он каким-то образом преобразует друг через друга компоненты волновой функции. Вид этого оператора будет установлен ниже. Но, уже исходя из самых общих соображений, легко убедиться в том, что операторы удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси (на угол, равный произведению углов поворота вокруг осей х и у). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента импульса, которые, следовательно, должны иметь место и для операторов спина:

со всеми вытекающими из них физическими следствиями.

Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции орбитального момента (приведенный в начале § 27 вывод здесь неприменим, поскольку он основан на выражении (26,14) для оператора , специфическом для орбитального момента).

Далее, последовательность собственных значений ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, которые мы обозначим посредством Разность между наибольшим и наименьшим значениями должна быть целым числом или нулем. Следовательно, число s может иметь значения 0, 1/2, 1, 3/2, ...

Таким образом, собственные значения квадрата спина равны

где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента спина может пробегать значения - всего значений. Соответственно этому, и волновая функция частицы со спином s имеет компонент

Опыт показывает, что большинство элементарных частиц - электроны, позитроны, протоны, нейтроны, мезоны и все гипероны - обладают спином 1/2. Кроме того, существуют элементарные частицы - -мезоны и -мезоны, - обладающие спином 0.

Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом.

Собственные значения полного момента

определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31).

Именно, при заданных значениях полный момент может иметь значения . Так, у электрона (спин 1/2) с отличным от нуля орбитальным моментом l полный момент может быть равен ; при момент имеет, конечно, лишь одно значение

Оператор полного момента J системы частиц равен сумме операторов моментов каждой из них, так что его значения опредег ляются снова правилами векторной модели. Момент J можно представить в виде

где S можно назвать полным спином, а L - полным орбитальным моментом системы.

Отметим, что если полный спин системы - полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из четного числа одинаковых частиц, то ее полный спин во всяком случае целый, а потому будет целым и полный момент.

Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин.

Учитывая также, что найдем

Спин - это момент вращения элементарной частицы .

Иногда даже в очень серьезных книгах по физике можно встретить ошибочное утверждение о том, что спин никак не связан с вращением, что, якобы, элементарная частица не вращается. Иногда встречается даже такое утверждение, что спин, это, якобы, такая особая квантовая характеристика элементарных частиц, типа заряда, которая не встречается в классической механике.

Такое заблуждение возникло вследствие того, что, при попытке представить элементарную частицу в виде вращающегося твердого шарика однородной плотности, получаются нелепые результаты относительно скорости такого вращения и магнитного момента, связанным с таким вращением. Но, на самом деле, эта нелепость говорит лишь о том, что элементарную частицу нельзя представить в виде твердого шарика однородной плотности, а не о том, что спин будто бы никак не связан с вращением.

  • Если спин не связан с вращением, то почему выполняется общий закон сохранения момента вращения, куда в виде слагаемого входит и спиновый момент? Получается, что с помощью спинового момента мы можем раскрутить какую-нибудь элементарную частицу так, чтобы она двигалась по окружности. Это получается, что вращение возникло, как бы, из ничего.
  • Если у всех элементарных частиц в теле все спины будут направлены в одну сторону и суммируются друг с другом, то что тогда мы получим на макроуровне?
  • Наконец, чем вращение отличается от невращения? Какая характеристика тела, является универсальным признаком вращения этого тела? Как отличить вращение от невращения? Если задуматься над этими вопросами, то Вы придете к выводу, что единственным критерием вращения тела является наличие у него момента вращения. Очень нелепо выглядит такая ситуация, когда Вам говорят, что, дескать, да, момент вращения как бы есть, а самого вращения как бы нет.

На самом деле, очень сильно сбивает с толку то, что в классической физике мы не наблюдаем аналога спина. Если бы мы могли бы обнаружить аналог спина в классической механике, то его квантовые свойства не казались бы нам слишком экзотическими. Поэтому для начала попробуем поискать аналог спина в классической механике.

Аналог спина в классической механике

Как известно, при доказательстве теоремы Эммы Нётер в той её части, которая посвящена изотропности пространства, мы получаем два слагаемых связанных с моментом вращения. Одно из этих слагаемых интерпретируется в качестве обычного вращения, а другое в качестве спина. Но теоремы Э.Нётер безотносительна того, с какой физикой мы имеем дело, с классической или с квантовой. Теорема Нётер имеет отношение к глобальным свойствам пространства и времени. Это универсальная теорема.

А раз так, то значит и спиновый вращательный момент существует в классической механике, хотя бы теоретически. Действительно, можно чисто теоретически построить модель спина в классической механике. Реализуется ли эта модель спина на практике в какой-нибудь макросистеме, это уже другой вопрос.

Давайте посмотрим на обычное классическое вращение. Сразу бросается в глаза то, что бывают вращения связанные с переносом центра массы и без переноса центра массы. Например, когда Земля вращается вокруг Солнца, то происходит перенос массы Земли, так как ось этого вращения не проходит через центр массы Земли. В то время, как при вращении Земли вокруг своей оси, центр массы Земли никуда не перемещается.

Тем не менее, при вращении Земли вокруг своей оси масса Земли всё равно двигается. Но очень интересно. Если выделить какой-нибудь объем пространства внутри Земли, то масса внутри этого объема не меняется с течением времени. Потому что, сколько массы уходит из этого объема в единицу времени с одной стороны, столько же и приходит массы с другой стороны. Получается, что в случае вращения Земли вокруг своей оси мы имеем дело с потоком массы.

Другой пример потока массы в классической механике, это круговой поток воды (воронка в ванной, перемешивание сахара в стакане с чаем) и круговые потоки воздуха (смерч, тайфун, циклон и т.п.). Сколько воздуха или воды уходит из выделенного объема в единицу времени, столько же туда и приходит. Поэтому масса этого выделенного объема не меняется во времени.

А теперь давайте сообразим, как должно выглядеть вращательное движение, в котором нет даже потока массы, но присутствует момент вращения. Представим себе неподвижный стакан воды. Пусть каждая молекула воды в этом стакане вращается по часовой стрелке вокруг вертикальной оси, которая проходит через центр массы молекулы. Вот такое упорядоченное вращение всех молекул воды.

Понятно, что у каждой молекулы воды в стакане будет ненулевой момент вращения. При этом моменты вращения всех молекул направлены в одну и ту же сторону. Значит, эти моменты вращения суммируются друг с другом. И эта сумма как раз и будет макроскопическим моментом вращения воды в стакане. (В реальной ситуации все моменты вращения молекул воды направлены в разные стороны и их суммирование дает нулевой общий момент вращения всей воды в стакане.)

Таким образом, мы получаем, что центр массы воды в стакане не вращается вокруг чего-то, и нет кругового потока воды в стакане. А момент вращения имеется. Это и есть аналог спина в классической механике.

Правда, это пока еще не совсем "честный" спин. У нас есть локальные потоки массы, связанные с вращением каждой отдельно взятой молекулы воды. Но это преодолевается предельным переходом, при котором число молекул воды в стакане устремляем к бесконечности, а массу каждой молекулы воды устремляем к нулю так, чтобы плотность воды оставалась постоянной при таком предельном переходе. Понятно, что при таком предельном переходе угловая скорость вращения молекул остается постоянной, и общий момент вращения воды тоже остается постоянным. В пределе получаем, что этот момент вращения воды в стакане имеет чисто спиновую природу.

Квантование момента вращения

В квантовой механике характеристики тела, которые могут передаваться от одного тела к другому, могут квантоваться. Основное положение квантовой механики утверждает, что эти характеристики могут передаваться от одного тела к другому не в любых количествах, а только кратно некоторому минимальному количеству. Это минимальное количество называется квантом. Квант в переводе с латыни как раз и означает количество, порция.

Поэтому и наука, которая изучает все следствия такой передачи характеристик, называется квантовой физикой. (Не путать с квантовой механикой! Квантовая механика, это математическая модель квантовой физики.)

Создатель квантовой физики Макс Планк полагал, что только такая характеристика, как энергия, передается от тела к телу пропорционально целому числу квантов. Это помогло Планку объяснить одну из загадок физики конца 19-го века, а именно, почему все тела не отдают всю свою энергию полям. Дело в том, что у полей бесконечное число степеней свободы, а у тел конечное число степеней свободы. В соответствии с законом о равнораспределении энергии по всем степеням свободы, все тела должны были бы мгновенно отдать всю свою энергию полям, чего мы не наблюдаем.

Впоследствии Нильс Бор разгадал вторую величайшую загадку физики конца 19-го века, а именно, почему все атомы одинаковы. Например, почему не бывает больших атомов водорода и маленьких атомов водорода, почему радиусы всех атомов водорода одинаковы. Оказалось, что эта проблема решается, если считать, что не только энергия квантуется, но и момент вращения тоже квантуется. И, соответственно, вращение может передаваться от одного тела к другому не в любых количествах, а только пропорционально минимальному кванту вращения.

Квантование момента вращения сильно отличается от квантования энергии. Энергия, это скалярная величина. Поэтому квант энергии всегда положителен и у тела может быть только положительная энергия, то есть положительное число квантов энергии. Кванты вращения вокруг определенной оси бывают двух видов. Квант вращения по часовой стрелке и квант вращения против часовой стрелки. Соответственно, если Вы выбираете другую ось вращения, то там также есть два кванта вращения, по часовой стрелке и против часовой стрелки.

Аналогичная ситуация и при квантовании импульса. Вдоль определенной оси телу можно передать положительный квант импульса или отрицательный квант импульса. При квантовании заряда тоже получается два кванта, положительный и отрицательный, но это скалярные величины, они не имеют направления.

Спин элементарных частиц

В квантовой механике принято собственные моменты вращения элементарных частиц называть спином. Момент вращения элементарных частиц очень удобно измерять в минимальных квантах вращения. Так и говорят, что, например, спин фотона вдоль оси такой-то равен (+1). Это означает, что у этого фотона момент вращения равен одному кванту вращения по часовой стрелке относительно выбранной оси. Или говорят, что спин электрона вдоль оси такой-то равен (-1/2). Это означает, что у этого электрона момент вращения равен половине кванта вращения против часовой стрелки относительно выбранной оси.

Иногда некоторых людей смущает, почему у фермионов (электроны, протоны, нейтроны и т.п.) половинные кванты вращения в отличие от бозонов (фотоны и т.п.). На самом деле квантовая механика ничего не говорит о том, какое количество вращения может иметь тело. Она говорит только о том, в каком количестве это вращение может ПЕРЕДАВАТЬСЯ от одного тела к другому.

Ситуация с половинами квантов встречается не только при квантовании вращения. Например, если решать уравнение Шредингера для линейного осциллятора, то получается, что энергия линейного осциллятора всегда равна полуцелому значению квантов энергии. Поэтому, если у линейного осциллятора забирать кванты энергии, то в конце концов у осциллятора останется только половина кванта энергии. И вот эту половину кванта энергии забрать у осциллятора уже никак не получится, так как забрать можно только весь квант энергии целиком, а не его половину. У линейного осциллятора остаются эти полкванта энергии в качестве нулевых колебаний. (Эти нулевые колебания бывают не такими уж и маленькими. В жидком гелии их энергия больше, чем энергия кристаллизации гелия, в связи с чем, гелий не может образовать кристаллическую решетку даже при нуле абсолютной температуры.)

Передача вращения элементарных частиц

Посмотрим, как передаются собственные моменты вращения элементарных частиц. Например, пусть электрон, вращается по часовой стрелке вокруг некоторой оси (спин равен +1/2). И пусть он отдает, например, фотону при электрон-фотонных взаимодействиях, один квант вращения по часовой стрелке вокруг этой же оси. Тогда спин электрона становится равным (+1/2)-(+1)=(-1/2), то есть электрон просто начинает вращаться вокруг этой же оси, но в обратную сторону против часовой стрелки. Таким образом, хотя у электрона была половина кванта вращения по часовой стрелке, но тем не менее у него можно забрать целый квант вращения по часовой стрелке.

Если у фотона до взаимодействия с электроном был спин на ту же самую ось равен (-1), то есть равен одному кванту вращения против часовой стрелки, то после взаимодействия спин стал равен (-1)+(+1)=0. Если спин на эту оссь изначально был равен нулю, то есть фотон не вращался вокруг этой оси, то после взаимодействия с электроном фотон, получив один квант вращения по часовой стрелке, начнет вращаться по часовой стрелке с величиной одного кванта вращения: 0+(+1)=(+1).

Итак, получается, что фермионы и бозоны отличаются друг от друга еще и тем, что собственное вращение бозонов можно остановить, а собственное вращение фермионов оснановить нельзя. Фермион всегда будет иметь ненулевой момент вращения.

У такого бозона, как, например, фотон, могут быть два состояния: полное отсутствие вращения (спин относительно любой оси равен 0) и состояние вращения. В состоянии вращения фотона, величина его спина на какую-нибудь ось может принимать три значения: (-1) или 0 или (+1). Значение ноль в состоянии вращения фотона говорит о том, что фотон вращается перпендикулярно выбранной оси и поэтому отсутствует проекция вектора момента вращения на выбранную ось. Если ось выбрать по другому, то там будет спин или (+1) или (-1). Нужно различать эти две ситуации у фотона, когда вращения совсем нет, и когда вращение есть, но оно идет не вокруг выделенной оси.

Кстати, спин фотона имеет очень простой аналог в классической электродинамике. Это вращение плоскости поляризации электромагнитной волны.

Ограничение максимального спина элементарных частиц

Очень загадочным является то, что мы не можем наращивать момент вращения элементарных частиц. Например, если электрон имеет спин (+1/2), то мы не можем дать этому электрону еще один квант вращения по часовой стрелке: (+1/2)+(+1)=(+3/2). Мы можем только менять вращение электрона по часовой и против часовой стрелки. Мы также не можем сделать спин равный, например, (+2) у фотона.

В то же время более массивные элементарные частицы могут иметь больше значения момента вращения. Например, омега-минус-частица имеет спин равный 3/2. На выделенную ось этот спин может принимать значения: (-3/2), (-1/2), (+1/2) и (+3/2). Так, если омега-минус-частица имеет спин (-1/2), то есть вращается против часовой стрелки вдоль заданной оси с величиной половины кванта вращения, тогда она может поглотить еще один квант вращения против часовой стрелки (-1) и её спин вдоль этой оси станет (-1/2)+(-1)=(-3/2).

Чем больше масса тела тем может быть больше его спин. Это можно понять, если вернуться к нашему классическому аналогу спина.

Когда мы имеем дело с потоком массы, то можем наращивать момент вращения до бесконечности. Например, если мы раскручиваем твердый однородный шарик вокруг оси, проходящий через его центр массы, то по мере того, как линейная скорость вращения на "экваторе" будет приближаться к скорости света, у нас начнет себя проявлять релятивистский эффект увеличения массы шарика. И хотя радиус шарика не меняется и линейная скорость вращения не растет свыше скорости света, тем не менее, момент вращения бесконечно нарастает из-за бесконечного нарастания массы тела.

А в классическом аналоге спина этого эффекта нет, если мы делаем "честный" предельный переход, уменьшая массу каждой молекулы воды в стакане. Можно показать, что в такой модели классического спина существует предельная величина момента вращения воды в стакане, когда дальнейшее поглощение момента вращения уже невозможно.

) и равен где J - характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Свойства спина

Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

Примеры

Ниже указаны спины некоторых микрочастиц.

спин общее название частиц примеры
0 скалярные частицы π -мезоны , K-мезоны, хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
3/2 спин-векторные частицы Δ-изобары
2 тензорные частицы гравитон , тензорные мезоны

На июль 2004 года, максимальным спином среди известных элементарных частиц обладает барионный резонанс Δ(2950) со спином 15/2. Спин ядер может превышать 20

История

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

Спин и магнитный момент

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ():

Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами.

Обобщение спина

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина , который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет » - более сложный аналог спина.

Спин классических систем

Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса . Классический спин является 4-вектором и определяется следующим образом:

В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

Именно поэтому спин называют собственным моментом импульса.

В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

См. также

  • Преобразование Гольштейна - Примакова

Примечания

Литература

  • Физическая энциклопедия. Под ред. А. М. Прохорова. - М.: «Большая российская энциклопедия», 1994. - ISBN 5-85270-087-8 .

Статьи

  • Физики разделили электроны на две квазичастицы. Группа ученых из Кембриджского и Бирмингемского университетов зафиксировала явление разделения спина (спинон) и заряда (холон) в сверхтонких проводниках.
  • Физики разделили электроны на спинон и орбитон. Группа ученых из немецкого Института конденсированного состояния и материалов (IFW) добилась разделения электрона на орбитон и спинон.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Спин" в других словарях:

    СПИН - собственный момент импульса элементарной частицы или системы, образованной из этих частиц, напр. атомного ядра. Спин частицы не связан с её движением в пространстве и не может быть объяснён с позиций классической физики он обусловлен квантовой… … Большая политехническая энциклопедия

    А; м. [англ. spin вращение] Физ. Собственный момент количества движения элементарной частицы, атомного ядра, присущий им и определяющий их квантовые свойства. * * * спин (англ. spin, буквально вращение), собственный момент количества движения… … Энциклопедический словарь

    Спин - Спин. Спиновый момент, присущий, например, протону, можно наглядно представить, связав его с вращательным движением частицы. СПИН (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую… … Иллюстрированный энциклопедический словарь

    - (обозначение s), в КВАНТОВОЙ МЕХАНИКЕ собственный угловой момент, присущий некоторым ЭЛЕМЕНТАРНЫМ ЧАСТИЦАМ, атомам и ядрам. Спин может рассматриваться как вращение частицы вокруг своей оси. Спин является одним из квантовых чисел, посредством… … Научно-технический энциклопедический словарь