Законы раздражения Нервно-мышечный синапс. Парабиоз, его фазы


Парабиоз следует рассматривать как активное состояние, характеризующееся местным, неподвижным актом возбуждения. Парабиотический участок обладает всеми признаками возбуждения, он лишь неспособен проводить бегущие волны возбуждения. Когда это состояние достигает полного развития, ткань как бы утрачивает свои функциональные свойства, так как, находясь в состоянии собственного сильного возбуждения, она становится рефрактерной по отношению к новым раздражителям. Местное возбуждение проявляется поэтому, как торможение, исключающее возможность функционирования ткани.

Местное парабиотическое возбуждение наряду со своей стойкостью и непрерывностью способно углубляться под влиянием приходящих импульсов возбуждения. При этом, чем сильнее и чаще эти импульсы, тем более углубляют они местное возбуждение и тем хуже проводятся через альтерированный участок. Поэтому эффекты сильных и слабых раздражений в уравнительную фазу выравниваются, а в парадоксальную фазу сильные раздражения совсем не проходят, тогда как слабые еще могут пройти. В тормозную фазу импульс, пришедший с нормального участка, не проходит сам и препятствует развитию распространяющегося возбуждения, так как, суммируясь со стационарным возбуждением, делает его стойким и неколеблющимся.

Наблюдаемые закономерности позволили Н. Е. Введенскому выдвинуть теорию, согласно которой устанавливается единая природа процесса возбуждения и торможения. Возникновение того или иного состояния зависит, согласно этой теории, от силы и частоты раздражения и функционального состояния ткани. Закономерности парабиотического торможения, установленные Н. Е. Введенским, согласно данным И. П. Павлова, воспроизводятся на" нервных клетках коры больших полушарий головного мозга и таким образом оказываются справедливыми для целостной деятельности организма.

О с н а щ е н и е: препаровальный набор, универсальный штатив с горизонтальным миографом, электростимулятор, раздражающие электроды, раствор Рингера, одно из следующих веществ: 1 % раствор калия хлорида (панангин), эфир, спирт или новокаин,. Работу проводят на лягушке.

С о д е р ж а н и е р а б о т ы. Приготовьте нервно-мышечный препарат и зафиксируйте его в миографе. Стимулируя нерв в режиме одиночного раздражения, подберите надпороговую и субмаксимальную силу раздражений, вызывающих слабое и сильное сокращение мышцы. Запишите их значения (мВ).

Смочите маленький ватный тампон раствором имеющегося у вас вещества. Наложите его на нерв ближе к месту его вхождения в мышцу. Через каждые 30 сек наносите одиночные раздражения на нерв выше альтерированного участка. При бережном приготовлении препарата удается проследить последовательное развитие фаз парабиоза (рис. 10).

Рис. 10. Последовательное развитие фаз парабиоза: А – исходное состояние;

Б – уравнительная фаза; В – парадоксальная фаза; Г – тормозная фаза.

Оформление протокола.

1. Запишите результаты опыта в тетради.

2. Вклейте кимограммы в соответствии с фазами парабиоза, сравните их с эталоном (рис. 10).

3. Объясните механизм парабиоза.

КОНТРОЛЬ УСВОЕНИЯ ТЕМЫ.

Тестовое задание к занятию «Механизмы распространения и передачи возбуждения»

1. Активацией Na+/K+-АТФ-азы;

2. Снижением интенсивности раздражителя;

3. Инактивацией системы Na+-каналов;

4. Активацией системы К+-каналов;

5. Утомлением клетки;

2. Мембрана нервного волокна ограничивающая нервное окончание называется:

1. постсинаптической

2. субсинаптической

3. синаптической щель

4. пресинаптической

3. Электротоническое распространение возбуждение по мембране нервной клетки:

1. Сопровождается деполяризацией мембраны

2. Сопровождается гиперполяризацией мембраны;

3. Происходит без изменения заряда мембраны;

4. Происходит без изменения проницаемости мембранных ионных каналов;

5. Невозможно

4. Тормозной и возбуждающий синапсы различаются:

1. специфическим расположением на клетке;

2. механизмом выброса медиатора

3. химической структурой медиатора

4. рецепторным аппаратом постсинаптической мембраны;

5. размером

5. При возникновении возбуждения (ПД) в теле нейрона (соме) холмике:

1. Оно будет распространяться в направлении от тела нейрона;

2. Оно будет распространяться по направлению к телу нейрона;

3. оно будет распространяться в обоих направлениях

4. Возникновение возбуждения в теле нейрона (соме) невозможно;

6. Роль ацетилхолина в механизме синаптической передачи возбуждения в мионевральном синапсе заключается в следующем:

1. Ацетилхолин взаимодействует со специфическим рецептором на постсинаптической мембране

и тем самым способствует открытию натриевых каналов.

2. Ацетилхолин, способствует накоплению медиатора в пресинаптическом аппарате

3. Ацетилхолин способствует выходу медиатора из пресинаптического аппарата.

4. Ацетилхолин проникает через постсинаптическую мембрану и деполяризует ее (формирует ВПСП);

5. Ацетилхолин проникает через постсинаптическую мембрану и гиперполяризует ее (формирует ТПСП);

7. Медиатор обеспечивает передачу возбуждения

1. Только в межнейронных синапсах;

2. Только в нервно-мышечных синапсах;

3. Во всех химических синапсах;

4. В любых синапсах

5. Во всех электрических синапсах;

8. На пресинаптичнеской мембране нервно-мышечного синапса скелетных мышц человека формируются:

1. только возбуждающие потенциалы

2. только тормозные потенциалы

3. и возбуждающие и тормозные потенциалы

4. для сокращения мышцы возбуждающие, для расслабления - тормозные

5. на пресинаптической мембране потенциал не формируется

9. ТПСП нервно-мышечного синапса формируется:

1. На пресинаптической мембране;

2. В аксонном холмике

3. На постсинаптической мембране

4. В нервно-мышечных синапсах ВПСП не формируются;

10. Выброс ацетилхолина в синаптическую щель в мионевральном синапсе приводит к:

1. деполяризации постсинаптической мембраны;

2. гиперполяризации постсинаптической мембраны;

3. деполяризации пресинатической мембраны;

4. блокированию проведения возбуждения;

5. гиперполяризации пресинаптической мембраны;

11. Диффузионный механизм распространения медиатора в синаптической щели является причиной:

1. Синаптической депрессии;

2. Синаптической задержки;

3. Инактивации медиатора;

4. Сальтаторного распространения возбуждения;

12. Сальтаторное проведение нервного импульса осуществляется:

1. По мембране тела нейрона;

2. По мембране миелинизированных нервных волокон;

3. По мембране немиелинизированных нервных волокон;

4. По нервам;

13. В момент прохождения волны возбуждения по нервному волокну, возбудимость волокна в месте ее прохождения:

1. Возрастает до максимальной;

2. Снижается до минимальной;

3. Снижается до пороговой;

4. Не изменяется;

14. Направления распространения возбуждения по нервному волокну и его мембранного тока на его мембране:

1. Параллельны и совпадают;

2. Параллельны и противоположны;

3. Перпендикулярны;

4. Синусоидальны;

15. Возбуждение в безмиелиновых нервных волокнах распространяется:

1.Скачкообразно, (перепрыгивая) через участки волокна, покрытые миелиновой оболочкой;

3. Непрерывно вдоль всей мембраны от возбужденного участка расположенному рядом

невозбужденному участку

4. Электротонически и в обе стороны от места возникновения

ПАРАБИОЗ (parabiosis ; греч. para около + biosis жизнь) - состояние возбудимой ткани, возникающее под влиянием сильных раздражений и характеризующееся нарушением проводимости и возбудимости.

Термин «парабиоз» введен в 1901 г. выдающимся русским физиологом H. Е. Введенским, впервые изучившим и описавшим это состояние на нервах и мышцах. П. развивается при действии на возбудимые ткани самых различных раздражителей (нервных импульсов, ядов, лекарств в больших дозах, механических, электрических и других стимулов) как в норме, так и в патологии. При этом выделяют фазы: первичную (примум), фазу наибольшей активности (оптимум) и фазу снижения активности (пессимум). Третья фаза объединяет 3 последовательно сменяющие друг друга стадии: уравнительную (провизорная, или трансформирующая, по H. Е. Введенскому), парадоксальную и тормозную (тормозящая). Каждая фаза характеризуется различными параметрами.

I фаза (примум) характеризуется снижением возбудимости и повышением лабильности ткани. Во II фазу (оптимум) возбудимость достигает максимума, а лабильность начинает снижаться. В III фазу (пессимум) возбудимость и лабильность снижаются параллельно и развиваются 3 стадии П. I стадия (уравнительная, по терминологии И. П. Павлова) характеризуется выравниванием ответов на сильные, частые и умеренные раздражения; по отношению к силе раздражения эта стадия называется провизорной или предварительной, а по отношению к частоте стимулов - трансформирующей. II стадия характеризуется извращенным реагированием: сильные раздражения вызывают меньший эффект, чем умеренные (парадоксальная стадия). И. П. Павловым было обнаружено наличие еще и ультрапарадоксальной стадии при развитии торможения в коре больших полушарий, когда положительные раздражения вызывают отрицательный эффект, а отрицательные - положительный (см. Высшая нервная деятельность). В III стадии ни сильные, ни умеренные раздражения не вызывают видимой реакции: в ткани развивается торможение (тормозная, или тормозящая, стадия). Однако слабые, при-пороговые раздражения в начале III стадии могут вызывать небольшие ответы - как бы снимают парабиоз.

Депарабиотизирующая роль таких слабых раздражений, а также ионов кальция, тепла и других раздражителей была подробно изучена учениками H. Е. Введенского Н.Н. Малышевым (1906), М. И. Виноградовым (1916), Л. Л. Васильевым (1925), Д. С. Воронцовым, В. С. Руси-новым. Факты депарабиотизирую-щего действия слабых раздражителей привели Л. Л. Васильева к концепции «антипарабиоза» и к обоснованию существования двух форм торможения - пара- и анти-парабиотического, т. е. деполяри-зационного и гиперполяризационно-го. За тормозной стадией при действии сильных раздражителей может наступить полная потеря возбудимости и проводимости (блок), а в дальнейшем и отмирание ткани.

H. Е. Введенский сравнивал П. нерва с остановленной волной возбуждения и обозначил такое состояние как местное неколебательное возбуждение (по А. А. Ухтомскому стационарное возбуждение).

До работ H. Е. Введенского в физиологии господствовал закон силовых отношений, согласно к-рому реакция тем больше, чем сильнее раздражение. H. Е. Введенский доказал отклонения от закона и наличие явления оптимума и пессимума силы и частоты раздражений. Этот закон был дополнен в процессе исследования действия слабых раздражений: слабые раздражения повышают готовность тканей к последующей деятельности, снижая текущую активность (активность в момент действия). Открытие и исследование П. сыграло важную роль в развитии нейрофизиологии (см.), поставив впервые вопрос о единстве основных нервных процессов - возбуждения (см.) и торможения (см.). До работ H. Е. Введенского и А. А. Ухтомского торможение рассматривалось как процесс, принципиально противоположный процессу возбуждения. С доказательством трехфазности реагирования и наличия П. в микроинтервалах времени стало бесспорным единство трех основных нервных процессов - возбуждения, торможения и покоя. Т. о., с принятием трехфазности П. и доказательством единства возбуждения, торможения и покоя такие противоречивые и трудные проблемы, как парабиотическое торможение и парабиотическое местное неколебательное возбуждение, формирование торможения в центрах на одиночное раздражение, когда приходит волна возбуждения, закон «все или ничего» и др., нашли объяснение.

Учение о парабиозе является крупным достижением отечественной науки, оказавшим влияние на развитие различных областей физиологии и теоретической медицины. Оно способствовало созданию концепций периэлектротона, доминанты, усвоения ритма и амплитуды, трехфазного реагирования, позволило дать принципиально новую оценку сущности и взаимосвязи основных нервных процессов и структуры нервного импульса, представляющих единство процессов возбуждения и торможения и состояния покоя.

Библиография: Васильев Л. Л. Значение физиологического учения H. Е. Введенского для невропатологии, JI., 1953; Введенский H. Е. Полное собрание сочинений, т. 3-4, JI., 1952-1953; Виноградов М. И. Учение H. Е. Введенского об основных нервных процессах, М., 1952; Воронов Ю. А. и др. Явление парабиоза в микроинтервалах времени, в кн.: Нервная система, под ред. JI. JI. Васильева, в. 4, с. 23, JI., 1963; Голиков Н. В. Физиологическая лабильность и ее изменения при основных нервных процессах, JI., 1950; Латманизова JI. В. Закономерности Введенского в электрической активности возбудимых единиц, JI., 1949; Ухтомский А. А. Собрание сочинений- т. 2, с. 54, JI., 1951; У х-томский А., Васильев Л. и Виноградов М. Учение о парабиозе, М., 1927; Adrian E. D. Wedensky inhibition in relation to the all or «all-or-none» principle in nerve, J. Physiol. (Lond.), v. 46, p. 384, 1913; Voronov J. A. Problemas de la irritabilidad y los procesos nerviosos fundamentales, v. 1 - 2, Santa Clara, 1969-1973.

Ю. А. Воронов.

Возбудимых тканей профессор Н. Е. Введенский , изучая работы нервно-мышечного препарата при воздействии на него различных раздражителей.

Энциклопедичный YouTube

    1 / 3

    ✪ ПАРАБИОЗ: красота, здоровье, работоспособность (Познавательное ТВ, Олег Мульцин)

    ✪ Почему менеджмент не подходит для русских? (Познавательное ТВ, Андрей Иванов)

    ✪ Система создания будущего: Производство идиотов (Познавательное ТВ, Михаил Величко)

    Субтитры

Причины парабиоза

Это самые разные повреждающие воздействия на возбудимую ткань или клетку, не приводящие к грубым структурным изменениям, но в той или иной мере нарушающее её функциональное состояние. Такими причинами могут быть механические, термические, химические и другие раздражители.

Сущность явления парабиоза

Как считал сам Введенский, в основе парабиоза лежит снижение возбудимости и проводимости , связанное с натриевой инактивацией. Советский цитофизиолог Н.А. Петрошин полагал, что в основе парабиоза лежат обратимые изменения белков протоплазмы. Под действием повреждающего агента клетка (ткань), не теряя структурной целостности, полностью прекращает функционировать. Это состояние развивается фазно, по мере действия повреждающего фактора (то есть зависит от продолжительности и силы действующего раздражителя). Если повреждающий агент вовремя не убрать, то наступает биологическая смерть клетки (ткани). Если же этот агент убрать вовремя, то ткань так же фазно возвращается в нормальное состояние.

Эксперименты Н.Е. Введенского

Введенский проводил опыты на нервно-мышечном препарате лягушки. На седалищный нерв нервно-мышечного препарата последовательно наносились тестирующие раздражители разной силы. Один раздражитель был слабый (пороговой силы), то есть вызывал минимальное по величине сокращение икроножной мышцы. Другой раздражитель был сильный (максимальный), то есть наименьший из тех, которые вызывают максимальное сокращение икроножной мышцы. Затем в какой-либо точке на нерв наносился повреждающий агент и каждые несколько минут нервно-мышечного препарат подвергался тестированию: поочередно слабыми и сильными раздражителями. При этом последовательно развивались следующие стадии:

  1. Уравнительная , когда в ответ на слабый раздражитель величина сокращения мышцы не изменялась, а в ответ на сильный амплитуда сокращения мышцы резко уменьшалась и становилась такой же, как при ответе на слабый раздражитель;
  2. Парадоксальная , когда в ответ на слабый раздражитель величина сокращения мышцы оставалась прежней, а в ответ на сильный раздражитель величина амплитуды сокращения становилась меньше, чем в ответ на слабый раздражитель, или мышца вообще не сокращалась;
  3. Тормозная , когда и на сильный и на слабый раздражители мышца не отвечала сокращением. Именно это состояние ткани и обозначается как парабиоз.

Биологические значение парабиоза

. Впервые подобный эффект был замечен у кокаина , однако вследствие токсичности и способности вызывать привыкание на данный момент применяют более безопасные аналоги – лидокаин и тетракаин . Один из последователей Введенского, Н.П. Резвяков предложил рассматривать патологический процесс как стадию парабиоза, поэтому для его лечения необходимо применять антипарабиотические средства.

4. Лабильность - функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие "Л." введено русским физиологом Н. Е. Введенским (1886), который считал мерой Л. наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Л. отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей Л. отличаются отростки нервных клеток - аксоны, способные воспроизводить до 500-1000 импульсов в 1 сек; менее лабильны центральные и периферические места контакта - синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100-150 возбуждений в 1 сек). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает Л., т. к. при этом замедляются процессы восстановления и удлиняется рефрактерный период.

Парабиоз - состояние, пограничное между жизнью и смертью клетки.

Причины парабиоза – самые разные повреждающие воздействия на возбудимую ткань или клетку, не приводящие к грубым структурным изменениям, но в той или иной мере нарушающее ее функциональное состояние. Такими причинами могут быть механические, термические, химические и другие раздражители.

Сущность парабиоза . Как считал сам Введенский, в основе парабиоза лежит снижение возбудимости и проводимости, связанное с натриевой инактивацией. Советский цитофизиолог Н.А. Петрошин полагал, что в основе парабиоза лежат обратимые изменения белков протоплазмы. Под действием повреждающего агента клетка (ткань), не теряя структурной целостности, полностью прекращает функционировать. Это состояние развивается фазно, по мере действия повреждающего фактора (то есть зависит от продолжительности и силы действующего раздражителя). Если повреждающий агент вовремя не убрать, то наступает биологическая смерть клетки (ткани). Если же этот агент убрать вовремя, то ткань так же фазно возвращается в нормальное состояние.

Эксперименты Н.Е. Введенского .

Введенский проводил опыты на нервно-мышечном препарате лягушки. На седалищный нерв нервно-мышечного препарата последовательно наносились тестирующие раздражители разной силы. Один раздражитель был слабый (пороговой силы), то есть вызывал минимальное по величине сокращение икроножной мышцы. Другой раздражитель был сильный (максимальный), то есть наименьший из тех, которые вызывают максимальное сокращение икроножной мышцы. Затем в какой-либо точке на нерв наносился повреждающий агент и каждые несколько минут нервно-мышечного препарат подвергался тестированию: поочередно слабыми и сильными раздражителями. При этом последовательно развивались следующие стадии:



1. Уравнительная , когда в ответ на слабый раздражитель величина сокращения мышцы не изменялась, а в ответ на сильный амплитуда сокращения мышцы резко уменьшалась и становилась такой же, как при ответе на слабый раздражитель;

2. Парадоксальная , когда в ответ на слабый раздражитель величина сокращения мышцы оставалась прежней, а в ответ на сильный раздражитель величина амплитуды сокращения становилась меньше, чем в ответ на слабый раздражитель, или мышца вообще не сокращалась;

3. Тормозная , когда и на сильный и на слабый раздражители мышца не отвечала сокращением. Именно это состояние ткани и обозначается как парабиоз .

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

1. Нейрон как структурная и функциональная единица ЦНС. Его физиологические свойства. Строение и классификация нейронов .

Нейроны – это основная структурно-функциональная единица нервной системы, обладающая специфическими проявлениями возбудимости. Нейрон способен принимать сигналы, перерабатывать их в нервные импульсы и проводить к нервным окончаниям, контактирующим с другим нейроном или рефлекторными органами (мышца или железа).

Виды нейронов:

1. Униполярные (имеют один отросток – аксон; характерны для ганглиев беспозвоночных);

2. Псевдоуниполярные (один отросток, делящийся на две ветви; характерно для ганглиев высших позвоночных).

3. Биполярные (есть аксон и дендрит, характерно для периферических и чувствительных нервов);

4. Мультиполярные (аксон и несколько дендритов – характерно для мозга позвоночных);

5. Изополярные (трудно дифференцировать отростки би- и мультиполярных нейронов);

6. Гетерополярные (легко дифференцировать отростки би- и мультиполярных нейронов)



Функциональная классификация:

1.Афферентные (чувствительные, сенсорные – воспринимают сигналы из внешней или внутренней среды);

2.Вставочные связывающие нейроны друг с другом (обеспечивают передачу информации внутри ЦНС: с афферентных нейронов на эфферентные).

3. Эфферентные (двигательные, мотонейроны – передают первые импульсы от нейрона к исполнительным органам).

Главная структурная особенность нейрона – наличие отростков (дендритов и аксонов).

1 – дендриты;

2 – тело клетки;

3 – аксонный холмик;

4 – аксон;

5 –Швановская клетка;

6 – перехват Ранвье;

7 – эфферентные нервные окончания.

Последовательное синоптическое объединение всех 3х нейронов образует рефлекторную дугу .

Возбуждение , возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам.Передаётся возбуждение от одной нервной клетки к другойтолько в одном направлении - с аксонапередающего нейрона навоспринимающий нейрон черезсинапсы , находящиеся на его дендритах, теле или аксоне.

Одностороннюю передачу возбуждения обеспечивают синапсы . Нервное волокно (отросток нейрона) может передавать нервные импульсыв обоих направлениях , а односторонняя передача возбуждения появляется тольков нервных цепях , состоящих из нескольких нейронов, соединённых синапсами.Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним в виде управляющих химических веществ:нейротрансмиттеров . Она может быть в видевозбуждающих илитормозных химических сигналов, а также в видемодулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Нервная система играет исключительную интегрирующую роль в жизнедеятельности организма, так как объединяет (интегрирует) его в единое целое и интегрирует его в окружающую среду. Она обеспечивает согласованную работу отдельных частей организма (координацию ), поддержание равновесного состояния в организме (гомеостаз ) и приспособление организма к изменениям внешней или внутренней среды (адаптивное состояние и/илиадаптивное поведение ).

Нейрон - это нервная клетка с отростками, являющаяся основной структурной и функциональной единицей нервной системы. Она имеет строение, сходное с другими клетками: оболочка, протоплазма, ядро, митохондрии, рибосомы и другие органоиды.

В нейроне различают три части: тело клетки - сома, длинный отросток - аксон и множество коротких разветвленных отростков - дендритов. Сома выполняет обменные функции, дендриты специализируются на приеме сигналов из внешней среды или от других нервных клеток, аксон на проведении и передаче возбуждения в область, удаленную от зоны дендритов. Аксон оканчивается группой концевых разветвлений для передачи сигналов другим нейронам или органам-исполнителям. Наряду с общим сходством в строении нейронов наблюдается большое разнообразие, обусловленное их функциональными различиями (рис. 1).

Есть ряд законов, которым подчиняются возбудимые ткани: 1. Закон «силы» ; 2. Закон «всё или ничего» ; 3. Закон «силы – времени» ; 4. Закон «крутизны нарастания тока» ; 5. Закон «полярного действия постоянного тока» .

Закон «силы» Чем больше сила раздражителя, тем больше величина ответной реакции. К примеру, величина сокращения скелетной мышцы в определенных пределах зависит от силы раздражителя: чем больше сила раздражителя, тем больше величина сокращения скелетной мышцы (до достижения максимального ответа).

Закон «все или ничего» Ответная реакция не зависит от силы раздражения (пороговая или сверхпороговая). Если сила раздражителя ниже пороговой, то ткань не реагирует («ничего»), но если сила достигла порогового значения, то ответная реакция – максимальная («всё»). Соответственно этому закону сокращается, к примеру, сердечная мышца, которая реагирует максимальным сокращением уже на пороговую (минимальную) силу раздражения.

Закон «силы – времени» Время ответа ткани зависит от силы раздражения: чем больше сила раздражителя, тем меньше времени он должен действовать, чтобы вызвать возбуждение ткани и, наоборот.

Закон «аккомодации» Чтобы вызвать возбуждение, раздражитель должен нарастать достаточно быстро. При действии медленно нарастающего тока, возбуждение не возникает, так как происходит приспособление возбудимой ткани к действию раздражителя. Это явление называется аккомодацией.

Закон «полярного действия» постоянного тока При действии постоянного тока возбуждение возникает только в момент замыкания и размыкания цепи. При замыкании – под катодом, а при размыкании – под анодом. Возбуждение под катодом больше, чем под анодом.

Физиология нервного ствола По структуре различают миелиновые и безмиелиновые нервные волокна. В миелиновых – возбуждение распространяется скачкообразно. В безмиелиновых – непрерывно вдоль всей мембраны, с помощью локальных токов.

Законы проведения возбуждения по н/в 1. Закон двухстороннего проведения возбуждения: возбуждение по нервному волокну может распространяться в двух направлениях от места его раздражения – центростремительно и центробежно. 2. Закон изолированного проведения возбуждения: каждое нервное волокно, входящее в состав нерва, проводит возбуждение изолированно (ПД не передается от одного волокна на другое). 3. Закон анатомической и физиологической целостности нервного волокна: для проведения возбуждения необходимы анатомическая (структурная) и физиологическая (функциональная) целостность нервного волокна.

Учение о парабиозе Разработал Н. Е. Введенский в 1891 году Фазы парабиоза Уравнительная Парадоксальная Тормозная

Нервно-мышечный синапс – это структурно-функциональное образование, которое обеспечивает передачу возбуждения с нервного волокна на мышечное. Синапс состоит из следующих структурных элементов: 1 — пресинаптической мембраны (это часть мембраны нервного окончания, которая контактирует с мышечным волокном); 2 — синаптической щели (её ширина 20 -30 нм); 3 — постсинаптической мембраны (концевая пластинка); В нервном окончании располагаются многочисленные синаптические пузырьки, содержащие химический посредник передачи возбуждения с нерва на мышцу – медиатор. В нервно-мышечном синапсе медиатором является ацетилхолин. В каждом пузырьке – около 10 000 молекул ацетилхолина.

Этапы нервно-мышечной передачи Первый этап – выброс ацетилхолина (АХ) в синаптическую щель. Он начинается с деполяризации пресинаптической мембраны. При этом активируются Са-каналы. Кальций по градиенту концентрации входит в нервное окончание и способствует выбросу путем экзоцитоза ацетилхолина из синаптических пузырьков в синаптическую щель. Второй этап: медиатор (АХ) путем диффузии достигает постсинаптической мембраны, где взаимодействует с холинорецептором (ХР). Третий этап – возникновение возбуждения в мышечном волокне. Ацетилхолин взаимодействует с холинорецептором на постсинаптической мембране. При этом активируются хемовозбудимые Na -каналы. Поток ионов Na+ из синаптической щели внутрь мышечного волокна (по градиенту концентрации) вызывает деполяризацию постсинаптической мембраны. Возникает потенциал концевой пластинки (ПКП). Четвертый этап – удаление АХ из синаптической щели. Этот процесс происходит под действием фермента – ацетилхолинэстеразы.

Ресинтез АХ Для передачи через синапс одного ПД требуется около 300 пузырьков с АХ. Поэтому необходимо постоянное восстановление запасов АХ. Ресинтез АХ происходит: За счет продуктов распада (холина и уксусной кислоты); Новый синтез медиатора; Подвоз необходимых компонентов по нервному волокну.

Нарушение синаптической проводимости Некоторые вещества могут частично или полностью блокировать нервно-мышечную передачу. Основные пути блокирования: а) блокада проведения возбуждения по нервному волокну (местные анестетики); б) нарушение синтеза ацетилхолина в пресинаптическом нервном окончании, в) угнетение ацетилхолинэстеразы (ФОС); г) связывание холинорецептора (-бунгаротоксин) или длительное вытеснение АХ (кураре); инактивация рецепторов (сукцинилхолин, декаметоний).

Двигательные единицы К каждому мышечному волокну подходит отросток мотонейрона. Как правило, 1 мотонейрон иннервирует несколько мышечных волокон. Это и есть двигательная (или моторная) единица. Двигательные единицы различаются размерами: объемом тела мотонейрона, толщиной его аксона и числом мышечных волокон, входящих в двигательную единицу.

Физиология мышц Функции мышц и их значение. Физиологические свойства мышц. Виды мышечного сокращения. Механизм мышечного сокращения. Работа, сила и утомление мышц.

18 Функции мышц В организме существуют 3 вида М. (скелетные, сердечные, гладкие), которые осуществляют Передвижение в пространстве Взаимоперемещение частей тела Поддержание позы (сидя, стоя) Выработку тепла (терморегуляция) Передвижение крови, лимфы Вдох и выдох Передвижение пищи в ЖКТ Защиту внутренних органов

19 Свойства мышц М. обладают следующими свойствами: 1. Возбудимость; 2. Проводимость; 3. Сократимость; 4. Эластичность; 5. Растяжимость.

20 Виды сокращения мышц: 1. Изотонические – когда при сокращении изменяется длина мышц (они укорачиваются), но напряжение (тонус) мышц при этом остается постоянным. Изометрические сокращение характеризуются повышением тонуса мышц, при этом длина мышцы не меняется. Ауксотонические (смешанные) – сокращения, при которых меняется и длина, и тонус мышц.

21 Виды сокращения мышц: Различают также одиночные и тетанические сокращения мышц. Одиночные сокращения возникают в ответ на действие редких одиночных импульсов. При высокой частоте раздражающих импульсов происходит суммация мышечных сокращений, которая вызывает длительное укорочение мышцы – тетанус.

Зубчатый тетанус Возникает в условиях когда каждый последующий импульс попадает в период расслабления одиночного мышечного сокращения

Гладкий тетанус Возникает в условиях когда каждый последующий импульс попадает в период укорочения одиночного мышечного сокращения.

31 Механизм мышечного сокращения (теория скольжения): Переход возбуждения с нерва на мышцу (через нервно-мышечный синапс). Распространение ПД вдоль мембраны мышечного волокна (сарколемме) и в глубь мышечного волокна по Т- трубочкам (поперечным трубочкам – углублениям сарколеммы в саркоплазму) Высвобождение ионов Ca++ из боковых цистерн саркоплазматического ретикулума (депо кальция) и диффузия его к миофибриллам. Взаимодействие Ca++ с белком – тропонином, находящимся на актиновых нитях. Освобождение центров связывания на актине и контакт поперечных мостиков миозина с этими участками актина. Высвобождение энергии АТФ и скольжение актиновых нитей вдоль миозиновых нитей. Это приводит к укорочению миофибриллы. Далее активируется кальциевый насос, который обеспечивает активный транспорт Са из саркоплазмы в саркоплазматический ретикулм. Снижается концентрация Са в саркоплазме, в результате происходит расслабление миофибриллы.

Сила мышц Максимальный груз, который мышца подняла, или максимальное напряжение, которое она развивает при своем сокращении называют силой мышцы. Измеряется она в килограммах. Сила мышцы зависит от толщины мышцы и её физиологического поперечного сечения (это сумма поперечных сечений всех мышечных волокон, составляющих эту мышцу). В мышцах с продольно расположенными мышечными волокнами физиологическое поперечное сечение совпадает с геометрическим. У мышц с косым расположением волокон (мышцы перистого типа) физиологическое поперечное сечение значительно превосходит геометрическое сечение. Они относятся к силовым мышцам.

Виды мышц А — параллельная Б — перистая В — веретенообразная

Работа мышцы Поднимая груз, мышца выполняет механическую работу, которая измеряется произведением массы груза на высоту его подъема и выражается в килограммометрах. A = F x S , где F – масса груза, S – высота его подъема Если F =0, то и работа А=0 Если S =0, то и работа А=0 Максимальная работа мышцей совершается при средних нагрузках (закон «средних нагрузок).

Утомлением называют временное снижение работоспособности мышц в результате длительных, чрезмерных нагрузок, которое исчезает после отдыха. Утомление — это сложный физиологический процесс, связанный, прежде всего, с утомлением нервных центров. Согласно теории «засорения» (Е. Пфлюгер) определенную роль в развитии утомления играет накопление в работающей мышце продуктов обмена (молочная кислота и др.). Согласно теории «истощения» (К. Шифф) утомление вызвано постепенным истощением в работающих мышцах энергетических запасов (АТФ, гликоген). Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Теория активного отдыха До настоящего времени единой теории, объясняющей причины и сущность утомления нет. В естественных условиях утомление двигательного аппарата организма является многофакторным процессом. И. М. Сеченов (1903), исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха, т. е. отдыха сопровождаемого работой левой руки. Таким образом, активный отдых является более эффективным средством борьбы с утомлением мышц, чем простой покой. Причину восстановления работоспособности мышц в условиях активного отдыха Сеченов связывал с действием на ЦНС афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.