Функции митохондрии в клетке таблица. Строение и функции митохондрий


Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Митохондрии - органеллы энергообеспечения метаболических процесов в клетке. Размеры их варьируют от 0,5 до 5-7 мкм, количество в клетке составляет от 50 до 1000 и более. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках и симпластах большие количества митохондрий сосредоточены вдоль рабочих элементов - сократительных фибрилл. В клетках, функции которых сопряжены с особо высокими энергозатратами, митохондрии образуют множественные контакты, объединяясь в сеть, или кластеры (кардиомиоциты и симпласты скелетной мышечной ткани). В клетке митохондрии выполняют функцию дыхания. Клеточное дыхание - это последовательность реакций, с помощью которых клетка использует энергию связей органических молекул для синтеза макроэргических соединений типа АТФ. Образующиеся внутри митохондрии молекулы АТФ переносятся наружу, обмениваясь на молекулы АДФ, находящиеся вне митохондрии. В живой клетке митохондрии могут передвигаться с помощью элементов цитоскелета. На ультрамикроскопическом уровне стенка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана имеет относительно ровную поверхность, внутренняя - образует направленные в центр складки, или кристы. Между наружной и внутренней мембранами возникает неширокое (около 15 нм) пространство, которое называется наружной камерой митохондрии; внутренняя мембрана ограничивает внутреннюю камеру. Содержимое наружной и внутренней камер митохондрии различно, и так же, как и сами мембраны, существенно отличается не только по рельефу поверхности, но и по ряду биохимических и функциональных признаков. Наружная мембрана по химическому составу и свойствам близка к другим внутриклеточным мембранам и плазмолемме.

Ее характеризует высокая проницаемость, благодаря наличию гидрофильных белковых каналов. Эта мембрана имеет в своем составе рецепторные комплексы, распознающие и связывающие вещества, поступающие в митохондрию. Ферментный спектр наружной мембраны небогат: это ферменты метаболизма жирных кислот, фосфолипидов, липидов и др. Главной функцией наружной мембраны митохондрии является отграничение органеллы от гиалоплазмы и транспорт необходимых для осуществления клеточного дыхания субстратов. Внутренняя мембрана митохондрий в большинстве клеток тканей различных органов формирует кристы в виде пластин (ламеллярные кристы), что значительно увеличивает площадь поверхности внутренней мембраны. В последней 20-25 % всех белковых молекул составляют ферменты дыхательной цепи и окислительного фосфорилирования. В эндокринных клетках надпочечников и половых желез митохондрии участвуют в синтезе стероидных гормонов. В этих клетках митохондрии имеют кристы в виде трубочек (тубул), упорядоченно расположенных в определенном направлении. Поэтому кристы митохондрий в стероидпродуцирующих клетках названных органов именуются тубулярными. Матрикс митохондрии, или содержимое внутренней камеры, представляет собой гелеобразную структуру, содержащую около 50 % белков. Осмиофильные тельца, описанные при электронной микроскопии, - это резервы кальция. Матрикс содержит ферменты цикла лимонной кислоты, катализирующие окисление жирных кислот, синтез рибосом, ферменты, участвующие в синтезе РНК и ДНК. Общее число ферментов превышает 40. Помимо ферментов, матрикс митохондрии содержит митохондриальную ДНК (митДНК) и митохондриальные рибосомы. Молекула митДНК имеет кольцевидную форму. Возможности внутримитохондриального белкового синтеза ограничены - здесь синтезируются транспортные белки митохондриальных мембран и некоторые ферментные белки, участвующие в фосфорилировании АДФ. Все остальные белки митохондрии кодируются ядерной ДНК, и их синтез осуществляется в гиалоплазме, и в дальнейшем они транспортируются в митохондрию. Жизненный цикл митохондрий в клетке короткий, поэтому природа наделила их двойственной системой воспроизводства - помимо деления материнской митохондрии, возможно образование нескольких дочерних органелл путем почкования.

Митохондрии есть у всех типов эукариотных клеток (рис. 1). Они имеют вид либо округлых телец, либо палочек, реже - нитей. Их размеры колеблются от 1 до 7 мкм. Число митохондрий в клетке составляет от нескольких сотен до десятков тысяч (у крупных простейших).

Рис . 1. Митохондрии. Вверху - митохондрии (?) в мочевых канальцах, видимые в световом микроскопе. Внизу - трехмерная модель организации митохондрии: 1 - кристы; 2 - внешняя мембрана; 3 - внутренняя мембрана; 4 - матрикс

Митохондрия образована двумя мембранами - внешней и внутренней , между которыми расположено межмембранное пространство . Внутренняя мембрана образует множество впячиваний - крист, представляющих собой либо пластины, либо трубочки. Такая ее организация обеспечивает огромную площадь внутренней мембраны. На ней располагаются ферменты, обеспечивающие преобразование энергии, заключенной в органических веществах (углеводах, липидах), в энергию АТФ, необходимую для жизнедеятельности клетки. Следовательно, функция митохондрий - участие в энергетических клеточных процессах. Именно поэтому большое количество митохондрий присуще, например, мышечным клеткам, выполняющим большую работу.

Пластиды . В растительных клетках обнаруживаются особые органоиды - пластиды, имеющие чаще веретеновидную или округлую форму, иногда более сложную. Различают три вида пластид - хлоропласты (рис. 2), хромопласты и лейкопласты.

Хлоропласты отличаются зеленым цветом, который обусловлен пигментом - хлорофиллом , обеспечивающим процесс фотосинтеза , т. е. синтеза органических веществ из воды (Н 2 О) и углекислого газа (СО 2) с использованием энергии солнечного света. Хлоропласты содержатся преимущественно в клетках листьев (у высших растений). Они сформированы двумя параллельно расположенными друг другу мембранами, окружающими содержимое хлоропластов - строму . Внутренняя мембрана образует многочисленные уплощенные мешочки - тилакоиды , которые сложены в стопки (наподобие стопки монет) - граны - и лежат в строме. Именно в тила-коидах и содержится хлорофилл.

Хромопласты определяют желтый, оранжевый и красный цвет многих цветков и плодов, в клетках которых присутствуют в большом количестве. Основными пигментами в их составе являются каротины . Функциональное назначение хромопластов состоит в цветовом привлечении животных, обеспечивающих опыление цветков и распространение семян.

Рис. 2. Пластиды: а - хлоропласты в клетках листа элодеи, видимые в световом микроскопе; б - схема внутреннего строения хлоропласта с гранами, представляющими собой стопки плоских мешочков, расположенных перпендикулярно поверхности хлоропласта; в - более подробная схема, на которой видны анастомозирующие трубочки, соединяющие отдельные камеры гран

Лейкопласты - это бесцветные пластиды, содержащиеся в клетках подземных частей растений (например, в клубнях картофеля), семян и сердцевины стеблей. В лейкопластах, главным образом, происходит образование из глюкозы крахмала и накапливание его в запасающих органах растений.

Пластиды одного вида могут превращаться в другой. Например, при осеннем изменении цвета листьев хлоропласты превращаются в хромопласты.

Митохондрия.

Митохондрия - состоящая из двух мембран органелла толщиной около 0,5 мкм.

Энергетическая станция клетки; основная функция - окисление органических соединений и использование, освобождающейся при их распаде энергии в синтезе молекул атф (универсальный источник энергии для всех биохимических процессов).

По своему строению они представляют собой цилиндрические органеллы, встречающиеся в эукариотической клетке в количестве от нескольких сот до 1-2 тысяч и занимающие 10-20 % её внутреннего объёма. Сильно варьируют так же размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих частей клетки относительно постоянна (0,5-1 мкм). Способны изменять форму. в зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры клеточного каркаса эукариотической клетки.

Красавица митохондрия в 3д представлении)

Альтернативой множеству разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих атф небольшие участки цитоплазмы, является существование длинных и разветвлённых митохондрий, каждая из которых может энергетически обеспечивать отдалённые друг от друга участки клетки. вариантом такой протяжённой системы может также являться упорядоченное пространственное объединение множества митохондрий (хондриом или митохондрион), обеспечивающее их кооперативную работу.

Особенно сложно этот тип хондриома устроен в мышцах, где группы гигантских разветвлённых митохондрий связаны друг с другом с помощью межмитохондриальных контактов (ммк). Последние образованы плотно прилегающими друг к другу наружными митохондриальными мембранами, в результате чего межмембранное пространство в этой зоне имеет повышенную электронную плотность (много отрицательно заряженных частиц). Особенно обильно ммк представлены в клетках сердечных мышц, где они связывают множественные отдельные митохондрии в согласованную работающую кооперативную систему.

Структура.

Наружная мембрана.

Наружная мембрана митохондрии имеет толщину около 7 нм, не образует впячиваний и складок, и замкнута сама на себя. на наружную мембрану приходится около 7 % от площади поверхности всех мембран клеточных органелл. Основная функция - отграничение митохондрии от цитоплазмы. Наружная мембрана митохондрии состоит из двойного жирового слоя (как и у клеточной мембраны) и пронизывающих его белков. Белки и жиры в равных пропорциях по массе.
Особую роль играет порин - каналообразующий белок.
Он формирует в наружной мембране отверстия диаметром 2-3 нм, через которые могут проникать небольшие молекулы и ионы. Крупные молекулы могут пересекать наружную мембрану только посредством активного транспорта через транспортные белки митохондриальных мембран. Наружная мембрана митохондрии может взаимодействовать с мембраной эндоплазматического ретикулума; это играет важную роль в транспортировке липидов и ионов кальция.

Внутренняя мембрана.

Внутренняя мембрана образует многочисленные гребневидные складки - кристы,
существенно увеличивающие площадь ее поверхности и, например, в клетках печени составляет около трети всех клеточных мембран. характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолопина - особый сложный жир, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов (положительно заряженных частиц).

Ещё одна особенность внутренней мембраны митохондрий - очень высокое содержание белков (до 70 % по весу), представленных транспортными белками, ферментами дыхательной цепи, а также крупными ферментами комплексами производящими атф. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы ферменты производящие атф, состоящие из головки, ножки и основания. При прохождении через них протонов происходит создание атф.
В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи. наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

Матрикс.

Матрикс - ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата жирных кислот, а так же ферменты типа трикарбоновых кислот (цикл дыхания клетки). Кроме того, здесь же находится митохондриальная днк, рнк и собственный белоксинтезирующий аппарат митохондрии.

пируваты (соли пировиноградной кислоты) - важные химические соединения в биохимии. Они является конечным продуктом обмена веществ глюкозы в процессе ее расщепления.

Митохондриальная днк.

Несколько отличий от днк ядерной:

- митохондриальная днк – кольцевая, в отличии от ядерной днк, которая упакована в хромосомы.

- между различными эволюционными вариантами митохондриальной днк одного вида невозможен обмен сходными участками.

И поэтому вся молекула изменяется только путем медленного мутирования в течение тысячелетий.

- мутации кода в митохондриальных днк могут возникать независимо от ядерной днк.

Мутация ядерного кода днк возникает в основном при делении клетки, но митохондрии делятся независимо от клетки, и могут получать мутацию кода отдельно от ядерной днк.

- сама структура митохондриальной днк упрощена, т.к. многие составные процессы чтения днк утеряны.

- транспортные рнк имеют одинаковое строение. но рнк- митохондрий учавствуют только в синтезе митохондриальных белков.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы.

Функции.

Энергообразование.

Основной функцией митохондрий является синтез атф - универсальной формы химической энергии в любой живой клетке.

Данная молекула может образовываться двумя путями:

- путем реакции, в которых энергия освобождающаяся на определенных окислительных этапах брожения запасается в виде атф.

- благодаря энергии, выделяющейся при окислении органических веществв в процессе клеточного дыхания.

Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий.
При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации атф, получивший название «хемиосмотического сопряжения».
В целом весь процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние - на кристах митохондрий:

1) Превращение поступивших из цитоплазмы в митохондрию пируват (конечный продукт расщепления глюкозы) и жирных кислот в ацетил-коа;

ацетил-коа – важное соединение в обмене веществ, используемое во многих биохимических реакциях. его главная функция – доставлять атомы углерода (с) с ацетил-группой (ch3 co) в цикл клеточного дыхания, чтобы те были окислены с выделением энергии.

клеточное дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, жиров и аминокислот до углекислого газа и воды.

2) Окисление ацетил-соа в цикле клеточного дыхания, ведущее к образованию надн;

НАДН кофермент, выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ.

3) Перенос электронов с надн на кислород по дыхательной цепи;

4) Образование атф в результате деятельности мембранного атф-создающего комплекса.

АТФ- синтетаза.

АТФ-синтетаза станция по производству молекул АТФ.

В структурно-функциональном плане АТФ-синтетаза состоит из двух крупных фрагментов, обозначаемых символами F1 и F0. Первый из них (фактор сопряжения F1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы, которые вместе образуют гексамер (αβ)3, имеющий вид слегка приплюснутого шара.

Субъединица – это структурный и функциональный компонент какой либо частицы
Полипептиды - органические соединения, содержащие от 6 до 80-90 аминокислотных остатков.
Глобула – состояние макромолекул, в котором колебание звеньев мало.
Гексамер – соединение содержащее 6 субъедениц.

Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся симметричность относительно угла поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F0. Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F1.

Минорная – одиночная субъеденица.

Мембранная часть АТФ-синтетазы, представляет собой водо-отталкивающий белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F0 входит одна белковая субъединица типа а , две копии субъединицы b , а также от 9 до 12 копий мелкой субъединицы c . Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух водо-отталкивающих α-спиралей, соединённых друг с другом короткой водо-притягивающей петлёй, ориентированной в сторону F1, а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F1 в сторону F0 субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.
Таким образом, в молекуле АТФазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору.

«Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ)3, находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F0.

Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ)3, соединяются с погружённым в мембрану кольцом из субъединиц c .

Способность синтезировать АТФ - свойство единого комплекса F0F1, объедененного с переносом протонов водорода через F0 к F1, в последнем из которых как раз и расположены центры реакции, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтетазы является протонный (положительно заряженный) потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного (отрицательно заряженного) транспорта.
Сила, приводящая в движение «ротор» АТФ-синтетазы, возникает при достижении разности потенциалов между наружной и внутренней сторонами мембраны > 220 10−3 Вольт и обеспечивается потоком протонов, протекающих через специальный канал в F0, расположенный на границе между субъединицами a и c . При этом путь переноса протонов включает в себя следующие структурные элементы:

1) Два расположенных на разных осях «полуканала», первый из которых обеспечивает поступление протонов из межмембранного пространства к существенно важным функциональным группам F0, а другой обеспечивает их выход в матрикс митохондрии;

2) Кольцо из субъединиц c , каждая из которых в своей центральной части содержит протонируемую карбоксильную группу (COOH), способную присоединять H+ из межмембранного пространства и отдавать их через соответствующие протонные каналы. В результате периодических смещений субъединиц с , обусловленных потоком протонов через протонный канал происходит поворот субъединицы γ, погружённой в кольцо из субъединиц с .

Таким образом, объединяющая активность АТФ-синтетазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх объединяющих субъединиц β, что в конечном счёте и обеспечивает работу фермента. При этом в случае образования АТФ «ротор» крутится по часовой стрелке со скоростью четыре оборота в секунду, а само подобное вращение происходит точными скачками по 120°, каждый из которых сопровождается образованием одной молекулы АТФ.
Работа АТФ-синтетазы связана с механическими движениями её отдельных частей, что позволило отнести этот процесс к особому типу явлений, названных «вращательным катализом». Подобно тому, как электрический ток в обмотке электродвигателя приводит в движение ротор относительно статора, направленный перенос протонов через АТФ-синтетазу вызывает вращение отдельных субъединиц фактора сопряжения F1 относительно других субъединиц ферментного комплекса, в результате чего это уникальное энергообразующее устройство совершает химическую работу - синтезирует молекулы АТФ. В дальнейшем АТФ поступает в цитоплазму клетки, где расходуется на самые разнообразные энергозависимые процессы. Подобный перенос осуществляется специальным встроенным в мембрану митохондрий ферментом АТФ/АДФ-транслоказой.

АДФ-транслоказа – пронизывающий внутреннюю мембрану белок, который обменивает вновь синтезированную АТФ на цитоплазматическую АДФ, что гарантирует сохранность фонда внутри митохондрий.

Митохондрии и наследственность.

ДНК митохондрий наследуются почти исключительно по материнской линии. Каждая митохондрия имеет несколько участков нуклеотидов в ДНК, идентичных во всех митохондриях (то есть в клетке много копий митохондриальных ДНК), что очень важно для митохондрий, неспособных восстанавливать ДНК от повреждений (наблюдается высокая частота мутаций). Мутации в митохондриальной ДНК являются причиной целого ряда наследственных заболеваний человека.

3д модель

Дисковери

С англ озвучкой

Немного о дыхании клетки и митохондрии на зарубежном языке

Структура строения

В клетках любых живых организмов есть особые органеллы, которые двигаются, функционируют, сливаются между собой и размножаются. Называются они митохондриями или хондриосомами. Подобные структуры содержатся как в клетках простейших организмов, так и в клетках растений и животных. Долгое время при изучении изучались и функции митохондрии, потому что она представляла особый интерес.

Действительно, на клеточном уровне митохондрии выполняют конкретную и весьма важную функцию - образуют энергию в виде аденозинтрифосфата. Это ключевой нуклеотид в обмене организмов и преобразовании его в энергию. АТФ выступает в роли универсального источника энергии, необходимой для протекания любых биохимических процессов в организме. В этом главные функции митохондрии - поддерживать жизнедеятельность на клеточном уровне за счёт формирования АТФ.

Процессы, происходящие в клетках, долгое время представляли особый интерес учёных, потому что это помогало лучше понять структуру и возможности организма. Процесс познания всегда занимает долгое время. Так Карл Ломанн в 1929 году открыл аденозинтрифосфат, а Фриц Липман в 1941 году разобрался в том, что он является основным поставщиком энергии в клетки.

Строение митохондрий

Внешний вид представляет такой же интерес, как и функции митохондрии. Размеры и формы этих органелл непостоянны и могут быть разными в зависимости от видов живых существ. Если описывать средние значения, то гранулярная и нитевидная митохондрия, состоящая из двух мембран, имеет размеры порядка 0,5 микромиллиметра в толщину, а длина может достигать 60 микромиллиметров.

Как уже было сказано выше, учёные долгое время пытались разобраться в вопросе, каково строение и функции митохондрий. Основные сложности были с недостаточно развитостью оборудования, потому что изучать микромир другими способами практически невозможно.

В митохондрий содержится больше, чем в клетках растений, потому что для животных преобразование энергии с эволюционной точки зрения более важно. Впрочем, объяснять подобные процессы достаточно сложно, но в клетках растений подобные функции берут на себя в основном хлоропласты.

В клетках митохондрии могут располагаться в самых разных местах, где есть потребность в АТФ. Можно сказать, что у митохондрий достаточно универсальное строение, поэтому они могут появляться в разных местах.

Функции митохондрии

Основная функция митохондрий - синтез молекул АТФ. Это своего рода энергетическая станция клетки, которая за счёт окисления различных высвобождает энергию за счёт их распада.

Главным источником энергии, т.е. соединением, используемым для распада, является Её в свою очередь организм получает из белков, углеводов и жиров. Есть два пути образования энергии, причём митохондрии используют оба. Первый из них связан с окислением пирувата в матриксе. Второй связан уже с кристами органелл и непосредственно завершает процесс энергообразования.

В целом данный механизм достаточно сложен и происходит в несколько этапов. Выстраиваются длинные единственная цель которых - энергообеспечение других клеточных процессов. Поддержание организма на клеточном уровне позволяет сохранить его жизнедеятельность в целом. Именно поэтому учёные долгое время пытались разгадать, как именно происходят данные процессы. Со временем многие вопросы были решены, особенно в этом помогло изучение ДНК и структуры остальных небольших клеток микромира. Без этого вряд ли можно было бы представить развитие данной науки в целом, а также изучение организма человека и высокоразвитых животных.