Что такое спин физика. Спин электрона


Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

Больше полезной информации для учащихся – у нас в телеграм .

Спин и момент импульса

Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

Теперь вспомним, что такое момент импульса в классической механике.

Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:

По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).


Спин же является собственным моментом импульса , то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы .

Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

Спиновое квантовое число

Для характеристики спина в квантовой физике введено спиновое квантовое число.

Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:

Бозоны и фермионы

Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.


Бозоны: фотон, глюон, бозон Хиггса. - в отдельной статье.

Фермионы: электрон, лептон, кварк

Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

Например, карандаш, заточенный с одной стороны. Спин равный 2 можно представить в виде карандаша, заточенного с двух сторон - при повороте такого карандаша на 180 градусов мы не заметим никаких изменений. А вот полуцелый спин равный 1/2 представляется объектом, для возвращения которого в первоначальное состояние нужно соверщить оборот в 720 градусов. Примером может служить точка, движущаяся по листу Мебиуса.


Итак, спин - квантовая характеристика элементарных частиц, которая служит для описания их внутреннего вращения, момент импульса частицы, не зависящий от ее внешних перемещений.

Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе , специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что "в полной мере квантовую физику не понимает никто", обратиться за помощью к опытным специалистам – вполне естественно!

(англ. spin веретено) – фундаментальная характеристика микроскопической частицы (например атомного ядра или элементарной частицы), которая в некотором отношении аналогична «собственном момента импульса частицы». Спин является квантовой свойством частиц и не имеет аналогов в классической физике. Тогда как классический момент импульса возникает вследствие вращения массивного тела со конечными размерами, спин присущ даже частицам, которые на сегодня считаются точечными и не связан ни с одним вращением масс внутри такой частицы. (Спин неточкових частиц, например атомных ядер или адронов, является векторной суммой спинов и орбитального момента импульса ее составляющих, т.е. и в этом случае спин частично связан с вращательным движением внутри частицы.)
Спин может принимать только определенные (квантованные) значения:

Цели: 0,1,2,3 …
полуцелым: 1 / 2, 3 / 2, …

Спин является важной характеристокю элементарных частиц.
История открытия
Спин электрона открыли в 1925 Уленбек и Гоулдсмит, проводя эксперименты по расщеплению пучка электронов в неоднородном магнитном поле. Ученые надеялись увидеть, как пучок электронов расщепится на несколько, в залежнотсти от квантованного орбитального момента. Если бы угловой момент электронов равен нулю, то пучок не расщеплялся, если бы угловой момент равен , То пучок расщепился бы на три, и т.д., на 2L +1 пучки при угловом моменте . Результат превзошел все ожидания: пучок расщепился на два. Объяснить это можно было лишь приписав электрону собственный момент . Этот собственный момент электрона получил название спина. Сначала думали, что спин соответствует какому-то внутреннему вращению электрона, но вскоре Поль Дирак вывел релятивистский аналог уравнения Шредингера (так называемое уравнение Дирака), которое автоматически объясняло существование спина совсем из других принципов.
Понятие спина позволило построить теорию периодической системы, выяснить структуру атомных спектров, объяснить природу ковалентных связей, т.
Оператор спина
Математически спин описывают Спинор – столбиком с 2S +1 волновых функций, где S – это значение спина. Так частицы с нулевым спином описывают одной волновой функцией или скалярным полем, частицы со спином 1 / 2 (например электроны) – двумя волнового функциями или спинорно полем, частицы со спином 1 – тремя волновыми функциями или векторным полем.
Операторами спина являются матрицы размерности (2S +1) x (2S +1). В случае частиц со спином 1 / 2 оператор спина пропорционален матрицам Паули

Поскольку матрицы Паулу не коммутируют, то одновременно можно определить только собственные значения одной из них. Обычно выбирают? z. Следовательно, проекция спина на ось z для электрона может иметь следующие значения.

О состоянии с часто говорят, как о состоянии со спином направленным вверх, о состоянии с говорят, как о состоянии со спином, направленным вниз, хотя эти названия вполне условны, и не соответствуют никаким направлениям в пространстве.
Значения других компонент спина являются неопределенными.

Сфера торговли идет рука об руку с различными техниками продаж. Один из самых эффективных способов заключить крупную сделку – СПИН-продажи. Эта техника вывела на свет новый подход к продаже: теперь основа влияния продавца должна быть внутри мыслей покупателя, а не внутри товара. Главным инструментом стали вопросы, ответами на которые клиент сам себя убеждает. Как, когда и какие вопросы задавать, чтобы СПИН-продажи работали, узнайте в нашем материале.

Что такое СПИН

SPIN-selling – результат масштабного исследования, которое проанализировали на десятках тысяч деловых встреч в 23 странах мира. Вывод таков: для заключения крупной сделки продавцу нужно знать 4 типа вопросов (ситуационные, проблемные, извлекающие, направляющие) и задавать их в подходящее время. СПИН-продажи – это, говоря простым языком, превращение любой сделки в воронку вопросов, которые из интереса делают потребность, развивают ее в необходимость и заставляют человека самому прийти к выводу заключить сделку.

СПИН-продажи – это превращение любой сделки в воронку вопросов, которые из интереса делают потребность, развивают ее в необходимость и заставляют человека самому прийти к выводу заключить сделку.

Недостаточно описать преимущества продукта – вы должны создать его картину, основываясь на удовлетворяемых им потребностях и решаемых проблемах. Не просто «наши автомобили качественные и надежные», а «закупка наших автомобилей снизит затраты на ремонт на 60%».

С помощью нужных вопросов клиент убеждается в том, что изменения необходимы, и ваше предложение – способ изменить ситуацию к лучшему, ценное дополнение для успешного бизнеса.

Главная особенность и большой плюс техники СПИН-продаж – ориентация на клиента, а не на продукт или предложение. Рассматривая человека, вы увидите его скрытые , так ваше поле для убеждения расширится. Основной метод этой техники – вопрос – позволяет не довольствоваться общей характеристикой всех покупателей, а выявлять индивидуальные черты.

Техника воздействия

Начните с того, чтобы не думать о том, как продать. Думайте о том, как и почему клиенты выбирают, покупают продукт и что вызывает сомнения. Нужно понимать, через какие этапы проходит клиент, принимая решение. Сначала он сомневается, чувствует неудовлетворенность, наконец, видит проблему. В этом система СПИН-продаж: нащупать скрытые потребности клиента (это та неудовлетворенность, которую он не осознает и не признает как проблему) и превратить их в явные, четко ощущаемые покупателем. На этом этапе вам пригодятся лучшие способы выявления потребностей и ценностей – ситуационные и проблемные вопросы.

Технология СПИН регулирует 3 стадии сделки:

  • Оценка вариантов.

Осознав, что пришла пора изменений, клиент оценивает доступные варианты по определенным им критериям (цена, скорость, качество). Вам нужно повлиять на те критерии, в которых сильно ваше предложение, и избегать сильных сторон конкурентов или ослаблять их. Будет неловко, если компания, славящаяся демократичными ценами, но не оперативностью, извлекающим вопросом «Насколько зависит прибыль от своевременных поставок?» наведет клиента на мысль о компании-конкуренте.

Когда покупатель, наконец, признает ваше предложение лучшим, он попадает в замкнутый круг сомнений, из-за которых так часто застывают сделки. Вы помогаете клиенту преодолеть страхи и прийти к окончательному решению.

Вопросы СПИН-продаж

Вместе с клиентом с помощью вопросов вы формируете логическую цепочку: чем она длиннее, чем сложнее покупателю было ее составлять, тем убедительнее она для него выглядит. Каждый из типов вопросов должен соответствовать этапу, на котором находится клиент. Не стоит забегать вперед: не рекламируйте свой товар, пока покупатель не осознал потребность в нем. Правило работает и по-другому: если клиент считает ваш продукт слишком дорогим, он просто еще не объяснил сам себе (с помощью вопросов), что он нужен покупателю очень сильно, и эта потребность стоит таких денег. Типы и примеры вопросов перед вами.

Ситуационные вопросы

С них начинается логическая цепочка – вы узнаете нужную информацию и выявляете скрытые потребности. Правда, этот тип вопросов неуместен на последних стадиях переговоров, а также в большом количестве раздражают собеседника, создавая ощущение допроса.

Например:

  • Из каких должностей состоит ваш штат сотрудников?
  • Помещение какого размера вы арендуете?
  • Оборудование какой марки вы используете?
  • Каковы цели покупки автомобиля?

Проблемные вопросы

Задавая их, вы заставляете клиента задуматься о том, устраивает ли его текущая ситуация. Будьте аккуратны с этим типом вопросов, чтобы клиент не задумался, нужен ли вообще ему ваш продукт. Сохраняйте готовность в любой момент предложить решение.

Например:

  • Возникают ли у вас трудности с неквалифицированными работниками?
  • Доставляет ли неудобство помещение таких размеров?
  • Является ли для вас проблемой быстрый износ оборудования?

Извлекающие вопросы

С их помощью вы предлагаете клиенту расширить проблему, задуматься о ее последствиях для бизнеса и жизни. С извлекающими вопросами нельзя спешить: если покупатель еще не понял, что у него есть серьезная проблема, он будет раздражен вопросами о ее последствиях. Не меньше раздражения вызывает шаблонность как проблемных, так и извлекающих вопросов. Чем разнообразнее и естественнее они прозвучат, тем эффективнее окажутся.

Например:

  • Приводят ли к крупным затратам частые поломки некачественного оборудования?
  • Увеличивается ли простой линии из-за перебоев в поставке материалов?
  • Какую часть прибыли вы теряете каждый месяц, когда линия простаивает?

Направляющие вопросы

Развеивают сомнения, клиент убеждает себя в том, что ваше предложение оптимально для наиболее эффективного решения своей проблемы.

  • Более надежное оборудование сократит расходы на его обслуживание?
  • Как вы думаете, просторный офис позволит нанять больше персонала и расширить возможности бизнеса?
  • Если ваш бизнес будет использовать автомобили с большим багажником, вы будете терять меньше клиентов?

Чтобы разбавить однотипные вопросы и не превращать переговоры в допрос, используйте привязки. Перед вопросом оставьте место небольшому предисловию, содержащему, например, факты или небольшую историю.

Существует три типа привязок – к высказываниям покупателя, к вашим личным наблюдениям, к ситуациям третьей стороны. Так вы разбавите ряд вопросов и объедините их в сбалансированный разговор. Предлагаем просмотреть скрипты , в том числе и видео , чтобы понять, как правильно использовать вопросы.

Подводные камни СПИН-продаж

Любую технику продаж ждут как похвалы, так и критика. Тенденция не обошла и СПИН-продажи. Свои недостатки они проявляют со стороны продавцов: он задает в основном закрытые вопросы, такая игра в «данетки» увеличивает количество вопросов и быстро надоедает. Больше вопросов становится и из-за нехватки информации о клиенте – к каждому из них предстоит найти свой подход.

Покупатели, на которых уже десятки лет отрабатывают сотни способов манипуляций, стали к ним чувствительными. СПИН-продажи также манипулируют клиентом, заставляя думать, что это он выбирает путь изменений. Нужно быть аккуратным в выборе вопросов и держать ситуацию под таким контролем, чтобы покупателю и в голову не пришло, что решает не он. Кроме того, технология СПИН-продаж обходит стороной презентацию товара, этап завершения сделки, а также мелкие розничные продажи, ориентируясь на крупные сделки.

Нужно быть аккуратным в выборе вопросов и держать ситуацию под таким контролем, чтобы покупателю и в голову не пришло, что решает не он.

СПИН – многообещающая техника продаж. В процессе вы узнаете все нужные сведения, хотя предварительная подготовка тоже важна: узнайте предложения конкурентов, решите, на каких преимуществах своего продукта будете делать акцент. Регулярные тренировки с записями бесед и наращивание мышц в реальных переговорах приведут вас к совершению желанных сделок.

    Я не фанатик и довольно трезво и критично смотрю на вещи. Странно, что как только появляется новая оригинальная методика (в любых сферах) — тут же наряду с явными почитателями появляются яростные критики. Так было с отличной и оригинальной методикой натурального тренинга мышц Мак Роберта Стюарта, описанного им в книге «Думай». Так было с методикой успешного знакомства с женщинами созданного Эриком фон Марковиком (Мистери) и описанного им в своей книге «Метож Мистери»…Герострат сжёг библиотеку в Афинах в попытке прославитсья, и ему удалось и то, и другое)) Реакция человечества не изменилась за последние столетия. Разве что стала чуть мягче и безопасней для новатора) Думаю, что Джордано Бруно, Коперник и Галилей подвергались боле опасной для их жизни критике и последствиям) Если читатель не скован узостью мышления и обладает хотя бы задатками «за деревьями увидеть лес» — он подчерпнёт в методе СПИН много интересных и успешных идей. И использует эту методику на пользу себе в своей работе и обыденной жизни.

Спин - это момент вращения элементарной частицы .

Иногда даже в очень серьезных книгах по физике можно встретить ошибочное утверждение о том, что спин никак не связан с вращением, что, якобы, элементарная частица не вращается. Иногда встречается даже такое утверждение, что спин, это, якобы, такая особая квантовая характеристика элементарных частиц, типа заряда, которая не встречается в классической механике.

Такое заблуждение возникло вследствие того, что, при попытке представить элементарную частицу в виде вращающегося твердого шарика однородной плотности, получаются нелепые результаты относительно скорости такого вращения и магнитного момента, связанным с таким вращением. Но, на самом деле, эта нелепость говорит лишь о том, что элементарную частицу нельзя представить в виде твердого шарика однородной плотности, а не о том, что спин будто бы никак не связан с вращением.

  • Если спин не связан с вращением, то почему выполняется общий закон сохранения момента вращения, куда в виде слагаемого входит и спиновый момент? Получается, что с помощью спинового момента мы можем раскрутить какую-нибудь элементарную частицу так, чтобы она двигалась по окружности. Это получается, что вращение возникло, как бы, из ничего.
  • Если у всех элементарных частиц в теле все спины будут направлены в одну сторону и суммируются друг с другом, то что тогда мы получим на макроуровне?
  • Наконец, чем вращение отличается от невращения? Какая характеристика тела, является универсальным признаком вращения этого тела? Как отличить вращение от невращения? Если задуматься над этими вопросами, то Вы придете к выводу, что единственным критерием вращения тела является наличие у него момента вращения. Очень нелепо выглядит такая ситуация, когда Вам говорят, что, дескать, да, момент вращения как бы есть, а самого вращения как бы нет.

На самом деле, очень сильно сбивает с толку то, что в классической физике мы не наблюдаем аналога спина. Если бы мы могли бы обнаружить аналог спина в классической механике, то его квантовые свойства не казались бы нам слишком экзотическими. Поэтому для начала попробуем поискать аналог спина в классической механике.

Аналог спина в классической механике

Как известно, при доказательстве теоремы Эммы Нётер в той её части, которая посвящена изотропности пространства, мы получаем два слагаемых связанных с моментом вращения. Одно из этих слагаемых интерпретируется в качестве обычного вращения, а другое в качестве спина. Но теоремы Э.Нётер безотносительна того, с какой физикой мы имеем дело, с классической или с квантовой. Теорема Нётер имеет отношение к глобальным свойствам пространства и времени. Это универсальная теорема.

А раз так, то значит и спиновый вращательный момент существует в классической механике, хотя бы теоретически. Действительно, можно чисто теоретически построить модель спина в классической механике. Реализуется ли эта модель спина на практике в какой-нибудь макросистеме, это уже другой вопрос.

Давайте посмотрим на обычное классическое вращение. Сразу бросается в глаза то, что бывают вращения связанные с переносом центра массы и без переноса центра массы. Например, когда Земля вращается вокруг Солнца, то происходит перенос массы Земли, так как ось этого вращения не проходит через центр массы Земли. В то время, как при вращении Земли вокруг своей оси, центр массы Земли никуда не перемещается.

Тем не менее, при вращении Земли вокруг своей оси масса Земли всё равно двигается. Но очень интересно. Если выделить какой-нибудь объем пространства внутри Земли, то масса внутри этого объема не меняется с течением времени. Потому что, сколько массы уходит из этого объема в единицу времени с одной стороны, столько же и приходит массы с другой стороны. Получается, что в случае вращения Земли вокруг своей оси мы имеем дело с потоком массы.

Другой пример потока массы в классической механике, это круговой поток воды (воронка в ванной, перемешивание сахара в стакане с чаем) и круговые потоки воздуха (смерч, тайфун, циклон и т.п.). Сколько воздуха или воды уходит из выделенного объема в единицу времени, столько же туда и приходит. Поэтому масса этого выделенного объема не меняется во времени.

А теперь давайте сообразим, как должно выглядеть вращательное движение, в котором нет даже потока массы, но присутствует момент вращения. Представим себе неподвижный стакан воды. Пусть каждая молекула воды в этом стакане вращается по часовой стрелке вокруг вертикальной оси, которая проходит через центр массы молекулы. Вот такое упорядоченное вращение всех молекул воды.

Понятно, что у каждой молекулы воды в стакане будет ненулевой момент вращения. При этом моменты вращения всех молекул направлены в одну и ту же сторону. Значит, эти моменты вращения суммируются друг с другом. И эта сумма как раз и будет макроскопическим моментом вращения воды в стакане. (В реальной ситуации все моменты вращения молекул воды направлены в разные стороны и их суммирование дает нулевой общий момент вращения всей воды в стакане.)

Таким образом, мы получаем, что центр массы воды в стакане не вращается вокруг чего-то, и нет кругового потока воды в стакане. А момент вращения имеется. Это и есть аналог спина в классической механике.

Правда, это пока еще не совсем "честный" спин. У нас есть локальные потоки массы, связанные с вращением каждой отдельно взятой молекулы воды. Но это преодолевается предельным переходом, при котором число молекул воды в стакане устремляем к бесконечности, а массу каждой молекулы воды устремляем к нулю так, чтобы плотность воды оставалась постоянной при таком предельном переходе. Понятно, что при таком предельном переходе угловая скорость вращения молекул остается постоянной, и общий момент вращения воды тоже остается постоянным. В пределе получаем, что этот момент вращения воды в стакане имеет чисто спиновую природу.

Квантование момента вращения

В квантовой механике характеристики тела, которые могут передаваться от одного тела к другому, могут квантоваться. Основное положение квантовой механики утверждает, что эти характеристики могут передаваться от одного тела к другому не в любых количествах, а только кратно некоторому минимальному количеству. Это минимальное количество называется квантом. Квант в переводе с латыни как раз и означает количество, порция.

Поэтому и наука, которая изучает все следствия такой передачи характеристик, называется квантовой физикой. (Не путать с квантовой механикой! Квантовая механика, это математическая модель квантовой физики.)

Создатель квантовой физики Макс Планк полагал, что только такая характеристика, как энергия, передается от тела к телу пропорционально целому числу квантов. Это помогло Планку объяснить одну из загадок физики конца 19-го века, а именно, почему все тела не отдают всю свою энергию полям. Дело в том, что у полей бесконечное число степеней свободы, а у тел конечное число степеней свободы. В соответствии с законом о равнораспределении энергии по всем степеням свободы, все тела должны были бы мгновенно отдать всю свою энергию полям, чего мы не наблюдаем.

Впоследствии Нильс Бор разгадал вторую величайшую загадку физики конца 19-го века, а именно, почему все атомы одинаковы. Например, почему не бывает больших атомов водорода и маленьких атомов водорода, почему радиусы всех атомов водорода одинаковы. Оказалось, что эта проблема решается, если считать, что не только энергия квантуется, но и момент вращения тоже квантуется. И, соответственно, вращение может передаваться от одного тела к другому не в любых количествах, а только пропорционально минимальному кванту вращения.

Квантование момента вращения сильно отличается от квантования энергии. Энергия, это скалярная величина. Поэтому квант энергии всегда положителен и у тела может быть только положительная энергия, то есть положительное число квантов энергии. Кванты вращения вокруг определенной оси бывают двух видов. Квант вращения по часовой стрелке и квант вращения против часовой стрелки. Соответственно, если Вы выбираете другую ось вращения, то там также есть два кванта вращения, по часовой стрелке и против часовой стрелки.

Аналогичная ситуация и при квантовании импульса. Вдоль определенной оси телу можно передать положительный квант импульса или отрицательный квант импульса. При квантовании заряда тоже получается два кванта, положительный и отрицательный, но это скалярные величины, они не имеют направления.

Спин элементарных частиц

В квантовой механике принято собственные моменты вращения элементарных частиц называть спином. Момент вращения элементарных частиц очень удобно измерять в минимальных квантах вращения. Так и говорят, что, например, спин фотона вдоль оси такой-то равен (+1). Это означает, что у этого фотона момент вращения равен одному кванту вращения по часовой стрелке относительно выбранной оси. Или говорят, что спин электрона вдоль оси такой-то равен (-1/2). Это означает, что у этого электрона момент вращения равен половине кванта вращения против часовой стрелки относительно выбранной оси.

Иногда некоторых людей смущает, почему у фермионов (электроны, протоны, нейтроны и т.п.) половинные кванты вращения в отличие от бозонов (фотоны и т.п.). На самом деле квантовая механика ничего не говорит о том, какое количество вращения может иметь тело. Она говорит только о том, в каком количестве это вращение может ПЕРЕДАВАТЬСЯ от одного тела к другому.

Ситуация с половинами квантов встречается не только при квантовании вращения. Например, если решать уравнение Шредингера для линейного осциллятора, то получается, что энергия линейного осциллятора всегда равна полуцелому значению квантов энергии. Поэтому, если у линейного осциллятора забирать кванты энергии, то в конце концов у осциллятора останется только половина кванта энергии. И вот эту половину кванта энергии забрать у осциллятора уже никак не получится, так как забрать можно только весь квант энергии целиком, а не его половину. У линейного осциллятора остаются эти полкванта энергии в качестве нулевых колебаний. (Эти нулевые колебания бывают не такими уж и маленькими. В жидком гелии их энергия больше, чем энергия кристаллизации гелия, в связи с чем, гелий не может образовать кристаллическую решетку даже при нуле абсолютной температуры.)

Передача вращения элементарных частиц

Посмотрим, как передаются собственные моменты вращения элементарных частиц. Например, пусть электрон, вращается по часовой стрелке вокруг некоторой оси (спин равен +1/2). И пусть он отдает, например, фотону при электрон-фотонных взаимодействиях, один квант вращения по часовой стрелке вокруг этой же оси. Тогда спин электрона становится равным (+1/2)-(+1)=(-1/2), то есть электрон просто начинает вращаться вокруг этой же оси, но в обратную сторону против часовой стрелки. Таким образом, хотя у электрона была половина кванта вращения по часовой стрелке, но тем не менее у него можно забрать целый квант вращения по часовой стрелке.

Если у фотона до взаимодействия с электроном был спин на ту же самую ось равен (-1), то есть равен одному кванту вращения против часовой стрелки, то после взаимодействия спин стал равен (-1)+(+1)=0. Если спин на эту оссь изначально был равен нулю, то есть фотон не вращался вокруг этой оси, то после взаимодействия с электроном фотон, получив один квант вращения по часовой стрелке, начнет вращаться по часовой стрелке с величиной одного кванта вращения: 0+(+1)=(+1).

Итак, получается, что фермионы и бозоны отличаются друг от друга еще и тем, что собственное вращение бозонов можно остановить, а собственное вращение фермионов оснановить нельзя. Фермион всегда будет иметь ненулевой момент вращения.

У такого бозона, как, например, фотон, могут быть два состояния: полное отсутствие вращения (спин относительно любой оси равен 0) и состояние вращения. В состоянии вращения фотона, величина его спина на какую-нибудь ось может принимать три значения: (-1) или 0 или (+1). Значение ноль в состоянии вращения фотона говорит о том, что фотон вращается перпендикулярно выбранной оси и поэтому отсутствует проекция вектора момента вращения на выбранную ось. Если ось выбрать по другому, то там будет спин или (+1) или (-1). Нужно различать эти две ситуации у фотона, когда вращения совсем нет, и когда вращение есть, но оно идет не вокруг выделенной оси.

Кстати, спин фотона имеет очень простой аналог в классической электродинамике. Это вращение плоскости поляризации электромагнитной волны.

Ограничение максимального спина элементарных частиц

Очень загадочным является то, что мы не можем наращивать момент вращения элементарных частиц. Например, если электрон имеет спин (+1/2), то мы не можем дать этому электрону еще один квант вращения по часовой стрелке: (+1/2)+(+1)=(+3/2). Мы можем только менять вращение электрона по часовой и против часовой стрелки. Мы также не можем сделать спин равный, например, (+2) у фотона.

В то же время более массивные элементарные частицы могут иметь больше значения момента вращения. Например, омега-минус-частица имеет спин равный 3/2. На выделенную ось этот спин может принимать значения: (-3/2), (-1/2), (+1/2) и (+3/2). Так, если омега-минус-частица имеет спин (-1/2), то есть вращается против часовой стрелки вдоль заданной оси с величиной половины кванта вращения, тогда она может поглотить еще один квант вращения против часовой стрелки (-1) и её спин вдоль этой оси станет (-1/2)+(-1)=(-3/2).

Чем больше масса тела тем может быть больше его спин. Это можно понять, если вернуться к нашему классическому аналогу спина.

Когда мы имеем дело с потоком массы, то можем наращивать момент вращения до бесконечности. Например, если мы раскручиваем твердый однородный шарик вокруг оси, проходящий через его центр массы, то по мере того, как линейная скорость вращения на "экваторе" будет приближаться к скорости света, у нас начнет себя проявлять релятивистский эффект увеличения массы шарика. И хотя радиус шарика не меняется и линейная скорость вращения не растет свыше скорости света, тем не менее, момент вращения бесконечно нарастает из-за бесконечного нарастания массы тела.

А в классическом аналоге спина этого эффекта нет, если мы делаем "честный" предельный переход, уменьшая массу каждой молекулы воды в стакане. Можно показать, что в такой модели классического спина существует предельная величина момента вращения воды в стакане, когда дальнейшее поглощение момента вращения уже невозможно.

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике, обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Что такое спин - на примерах

Хотя термин «спин» относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже могут быть описаны неким числом, которое показывает, на сколько частей нужно разделить цикл вращения некоего элемента системы, чтобы она вернулась в состояние, неотличимое от начального.

Легко представить себе спин, равный 0 : это точка - она со всех сторон выглядит одинаково , как её ни крути.

Примером спина, равного 1 , может служить большинство обычных предметов без какой-либо симметрии: если такой предмет повернуть на 360 градусов , то этот предмет вернётся в своё первоначальное состояние. Для примера - можно положить ручку на стол, и после поворота на 360° ручка опять будет лежать так же, как и до поворота.

В качестве примера спина, равного 2 можно взять любой предмет с одной осью центральной симметрии: если его повернуть на 180 градусов, он будет неотличим от исходного положения, и получается за один полный оборот он становится неотличим от исходного положения 2 раза. Примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный - и тогда после поворота на 180° он вернется в положение, не отличимое от исходного. Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы

А вот с полуцелым спином, равным 1 / 2 немножко сложнее: это получается, что в исходное положение система возвращается после 2-х полных оборотов, то есть после поворота на 720 градусов. Примеры:

  • Если взять ленту Мёбиуса и представить, что по ней ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
  • четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернётся в исходное положение (например, верхнюю мёртвую точку), но распределительный вал вращается в 2 раза медленнее и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте коленчатого вала на 2 оборота двигатель внутреннего сгорания вернётся в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

На подобных примерах можно проиллюстрировать сложение спинов:

  • Два заточенных только с одной стороны одинаковых карандаша («спин» каждого - 1), скреплённые боковыми сторонами друг с другом так, что острый конец одного будет рядом с тупым концом другого (↓). Такая система вернётся в неотличимое от начального состояния при повороте всего на 180 градусов, то есть «спин» системы стал равным двум.
  • Многоцилиндровый четырёхтактный двигатель внутреннего сгорания («спин» каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный «спин» - 1), четырёхцилиндровый - через 180 градусов («спин» - 2), восьмицилиндровый - через 90 градусов («спин» - 4).

Свойства спина

Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

Вектор спина меняет своё направление при преобразовании Лоренца . Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

Примеры

Ниже указаны спины некоторых микрочастиц.

спин общее название частиц примеры
0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
2 тензорные частицы гравитон , тензорные мезоны

На июль 2004 года максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

История

Сам термин "спин" в науку ввели С. Гаудсмит и Д. Уленбек в 1925 г. .

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

Спин и магнитный момент

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц . В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

Обобщение спина

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном