Понятие о системах массового обслуживания (СМО). Система массового обслуживания, ее разновидности и научное обоснование


  • Простейший поток и применение практических задач.
  • Нестационарные пуассоновские потоки.
  • Потоки с ограниченными последствиями (потоки Пальма).
  • Потоки восстановления.
  • 1. Введение.

    1.1. Историческая справка.

    Большинство систем, с которыми человек имеет дело, являются стохастическими. Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях.

    Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К. Эрлангом (1878- 1929г) в период между 1908 и 1922гг. Эти задачи были вызваны к жизни стремлением упорядочить работу телефонной сети и разработать методы, позволяющие заранее повысить качество обслуживания потребителей в зависимости от числа используемых устройств. Оказалось, что ситуации, возникающие на телефонных станциях, являются типичными не только для телефонной связи. Работа аэродромов, морских и речных портов, магазинов, терминальных классов, электронных вычислительных комплексов, радиолокационных станций и т.д. может быть описана в рамках ТСМО.

    1.2. Примеры систем массового обслуживания. Анализ задач ТСМО.

    Пример 1. Телефонная связь времен Эрланга представляла из себя телефонную станцию, связанную с большим числом абонентов. Телефонистки станции по мере поступления вызовов соединяли телефонные номера между собой.

    Задача: Какое количество телефонисток (при условии их полной занятости) должно работать на станции для того, чтобы потери требований были минимальными.

    Пример 2. Система скорой помощи некоего городского района представляет собой пункт (который принимает требования на выполнение), некоторое количество автомашин скорой помощи и несколько врачебных бригад.

    Задача: Определить количество врачей, вспомогательного персонала, автомашин, для того чтобы время ожидания вызова было для больных оптимальным при условии минимизации затрат на эксплуатацию системы и максимизации качества обслуживания.

    Пример 3. Важной задачей является организация морских и речных перевозок грузов. При этом особое значение имеют оптимальное использование судов и портовых сооружений.

    Задача: Обеспечить определенный объем перевозок при минимальных расходах. При этом сократить простои судов при погрузочно-разгрузочных работах.

    Пример 4. Система обработки информации содержит мультиплексный канал и несколько ЭВМ. Сигналы от датчиков поступают на мультиплексный канал, где буферизуются и предварительно обрабатываются. Затем поступают в ту ЭВМ, где очередь минимальна.

    Задача: Обеспечить ускорение обработки сигналов при заданной суммарной длине очереди.

    Пример 5 . На рис 1.1. изображена структурная схема типичной системы массового обслуживания – ремонтного предприятия (например, по ремонту ПЭВМ). Порядок ее работы ясен из схемы и не требует разъяснений.

    рис 1.1.

    Нетрудно привести множество других примеров из самых различных областей деятельности.

    Характерным для таких задач является:

    1. условия “двойной” случайности –
      • случаен момент времени поступления заказа на обслуживание (на телефонную станцию, на пункт скорой помощи, на вход процессора, случаен момент времени прибытия морского судна под погрузку и т.д.);
      • случайна длительность времени обслуживания.

    2)проблема бича нашего времени – очередей: судов перед шлюзами, машин перед прилавками, задач на входе процессоров вычислительного комплекса и т.д.

    А.К. Эрланг обратил внимание на то, что СМО могут быть разделены на два типа, а именно: на системы с ожиданием и системы с потерями. В первом случае – заявка, поступившая на вход системы “ждет” очереди на выполнение, во втором – она из-за занятости канала обслуживания получает отказ и теряется для СМО.

    В дальнейшем мы увидим, что к классическим задачам Эрланга прибавляются новые задачи:

    Реальные системы, с которыми приходится иметь дело на практике, как правило, очень сложны и включают в себя ряд этапов (стадий) обслуживания (рис 1.1.). Причем на каждом этапе может существовать вероятность отказа в выполнении или существует ситуация приоритетного обслуживания по отношению к другим требованиям. При этом отдельные звенья обслуживания могут прекратить свою работу (для ремонта, подналадки и т.д.) или могут быть подключены дополнительные средства. Могут быть такие обстоятельства, когда требования, получившие отказ, вновь возвращаются в систему (подобное может происходить в информационных системах).

    1.3. Понятия, определения, терминология.

    Все СМО имеют вполне определенную структуру, изображенную на рис 1.2

    рис 1.2

    Определения, термины

      • Потоком называют последовательность событий. Поток, состоящий из требований на обслуживание, называют потоком требований.
      • Поток требований, поступающих в обслуживающую систему, называют входящим потоком.
      • Поток требований, которые обслужены, называют выходящим потоком.
      • Совокупность очередей и приборов (каналов) обслуживания называются системой обслуживания.
      • Каждые требования поступают на свой канал, где подвергается операции обслуживания.
      • Каждая СМО имеет определенные правила формирования очереди и правила или дисциплину обслуживания.

    1.4. Классификация СМО.

    1.4.1. По характеру источника требований различают СМО с конечным и бесконечным количеством требований на входе.

    В первом случае в системе циркулирует конечное, обычно постоянное количество требований, которые после завершения обслуживания возвращаются в источник.

    Во втором случае источник генерирует бесконечное число требований.

    Пример 1. Цех с постоянным количеством станков или определенное количество ПЭВМ в терминальном классе, требующих постоянного профилактического осмотра и ремонта.

    Пример 2 . Сеть Internet с бесконечным требованием на входе, любой магазин, парикмахерская и т.д.

    Первый вид СМО называют замкнутой, второй – разомкнутой.

    СМО различают:

    1.4.2. По дисциплине обслуживания:

      1. обслуживание в порядке поступления;
      2. обслуживание в случайном порядке (в соответствии с заданным законом распределения);
      3. обслуживание с приоритетом.

    1.4.3. по характеру организации:

      1. с отказами;
      2. с ожиданиями;
      3. с ограничением ожидания.

    В первом случае заявка получает отказ, когда канал занят. Во втором случае – ставится в очередь и ждет освобождения канала. В третьем случае вводится ограничения на длительность ожидания.

    1.4.4. По количеству единиц обслуживания:

      1. одноканальные;
      2. двухканальные;
      3. многоканальные.

      1.4.5. По числу этапов (фаз) обслуживания - на однофазные и многофазные. (Примером многофазных СМО может служить любая поточная линия).

      1.4.6. По свойствам каналов: на однородные, когда каналы имеют одинаковую характеристику и неоднородные в противном случае.

    Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

    1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
    2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

    Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

    Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

    Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

    Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

    Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

    Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

    Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

    В качестве характеристик СМО рассматриваются:

    • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
    • среднее время «простоя» отдельных каналов и системы в целом;
    • среднее время ожидания в очереди;
    • вероятность того, что поступившая заявка будет немедленно обслужена;
    • закон распределения длины очереди и другие.

    Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

    3.1 Модели систем массового обслуживания.

    Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

    a - распределение входного потока заявок;

    b - распределение выходного потока заявок;

    c – конфигурация обслуживающего механизма;

    d – дисциплина очереди;

    e – блок ожидания;

    f – емкость источника.

    Теперь рассмотрим подробнее каждую характеристику.

    Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

    Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

    Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

    1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
    2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
    3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

    Таким образом, можно выделить одно- и многоканальные СМО.

    С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

    Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

    Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

    1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
    2. ПОСППО (последним пришел – первым обслуживаешься);
    3. СОЗ (случайный отбор заявок) – из банка данных.
    4. ПР – обслуживание с приоритетом.

    Длина очереди может быть

    • неограничена – тогда говорят о системе с чистым ожиданием;
    • равна нулю – тогда говорят о системе с отказами;
    • ограничена по длине (система смешанного типа).

    Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

    Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

    Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

    3.2 Входной поток требований.

    С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

    Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

    Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

    Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

    Поток называется простейшим , если он стационарный, без последействия и ординарный.

    Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

    Следствие 1 . Простейший поток также называется пуассоновским.

    Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

    Рассмотрим ПРИМЕР.

    В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

    Решение.

    По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

    ^

    3.3 Состояние системы. Матрица и граф переходов.

    В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

    Е 0 – все каналы свободны;

    Е 1 – занят один канал;

    Е n – заняты все каналы;

    Е n +1 – заняты все каналы и одна заявка в очереди;

    Е n + m – заняты все каналы и все места в очереди.

    Аналогичная система с отказами может находиться в состояниях E 0 E n .

    Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

    С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

    Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

    Рисунок 3.1 – граф переходов

    Сост. Е 0 Е 1 Е 2
    Е 0 Р 0,0 Р 0,1 Р 0,2
    Е 1 Р 1,0 Р 1,1 Р 1,2
    Е 2 Р 2,0 Р 2,2 Р 2,2

    Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

    Так как система обязательно перейдет из одного

    состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

    3.4 Одноканальные СМО.

    3.4.1 Одноканальные СМО с отказами.

    Будем рассматривать системы, удовлетворяющие требованиям:

    (Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

    Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

    А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

    А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

    А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

    Таким образом, получим матрицу переходов:

    Сост. Е 0 Е 1
    Е 0 1-l* Dt l* Dt
    Е 1 m* Dt 1-m* Dt

    Вероятность простоя и отказа системы.

    Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
    изображен на рисунке 3.2.

    Асимптотой графика является прямая
    .

    Очевидно, начиная с некоторого момента t ,


    1

    Рисунок 3.2

    Окончательно получим, что
    и
    , где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

    Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

    Стационарный режим работы и коэффициент загрузки системы.

    Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
    называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
    ,
    . Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

    На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

    Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
    .

    3.4.2 Одноканальные СМО с неограниченной длиной очереди.

    Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

    решая которую найдем, что . Таким образом, при условии, что y <1, получим
    Окончательно,
    и
    – вероятность нахождения СМО в состоянии Е k в случайный момент времени.

    Средние характеристики системы.

    За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

    • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
    • v – длину очереди;
    • w – время ожидания начала обслуживания;
    • w 0 – общее время нахождения в системе.

    Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

    – среднее число заявок в системе.

    – средняя длина очереди.

    – среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

    – среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

    На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

    Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
    , средняя длина очереди
    , среднее время ожидания начала обслуживания
    часа = 50 мин, и, наконец, среднее время нахождения в системе
    час.

    3.4.3 Одноканальные СМО смешанного типа.

    Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
    , т.е. одна заявка обслуживается и еще s заявок – в очереди.

    Вероятность простоя системы равна
    ,

    а вероятность отказа системы -
    .

    Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

    Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
    . Для системы с чистым ожиданием
    . Для системы с ограниченной длиной очереди
    . Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

    3.5 Многоканальные СМО.

    3.5.1 Многоканальные СМО с отказами.

    Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
    , где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

    , k=0, 1, …

    Функция стоимости.

    Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
    . Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

    Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

    Рисунок 3.3

    Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

    ПРИМЕР.

    Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

    Решение. y = 2/1=2. с 1 =7, с 2 =2.

    Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
    . Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

    Предположим, что s =3. Тогда
    , С(3) = с 1 *l* p 3 2 *
    =5.79.

    Предположим, что имеется четыре канала, т.е. s =4. Тогда
    ,
    , С(4) = с 1 *l* p 4 2 *
    =5.71.

    Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
    , С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

    3.5.2 Многоканальные СМО с очередью.

    Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

    P(w>0) – вероятность ожидания начала обслуживания,
    .

    Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

    ПРИМЕР.

    СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

    Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
    ,
    .

    Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

    Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

    3.6 Вопросы для самоконтроля

    1. Предмет и задачи теории массового обслуживания.
    2. СМО, их модели и обозначения.
    3. Входной поток требований. Интенсивность входного потока.
    4. Состояние системы. Матрица и граф переходов.
    5. Одноканальные СМО с отказами.
    6. Одноканальные СМО с очередью. Характеристики.
    7. Стационарный режим работы. Коэффициент загрузки системы.
    8. Многоканальные СМО с отказами.
    9. Оптимизация функции стоимости.
    10. Многоканальные СМО с очередью. Характеристики.

    3.7 Упражнения для самостоятельной работы

    1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
    2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
    3. Время обслуживания в СМО подчиняется экспоненциальному закону,
      m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
    4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
    5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
    6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
    7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
    8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
    9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
    10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
    11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
    12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
    13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

    При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания , а системы - систем массового обслуживания (СМО) . Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.


    Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания . Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные .


    Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований) . Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.


    Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.


    В качестве показателей эффективности СМО используются: среднее число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.


    СМО делят на два основных типа (класса): СМО с отказами и СМО с ожиданием (очередью) . В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.


    СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.


    Для классификации СМО важное значение имеет дисциплина обслуживания , определяющая порядок выбора заявок из числа поступивших и порядок распределения их между свободными каналами. По этому признаку обслуживание заявки может быть организовано по принципу "первая пришла - первая обслужена", "последняя пришла - первая обслужена" (такой порядок может применяться, например, при извлечении для обслуживания изделий со склада, ибо последние из них оказываются часто более доступными) или обслуживание с приоритетом (когда в первую очередь обслуживаются наиболее важные заявки). Приоритет может быть как абсолютным , когда более важная заявка"вытесняет" из-под обслуживания обычную заявку (например, в случае аварийной ситуации плановые работы ремонтных бригад прерываются до ликвидации аварии), так и относительным , когда более важная заявка получает лишь "лучшее" место в очереди.

    Понятие марковского случайного процесса

    Процесс работы СМО представляет собой случайный процесс .


    Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.


    Процесс называется процессом с дискретными состояниями , если его возможные состояния можно заранее перечислить, а переход системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем , если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.


    Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-то событий (например, прихода новой заявки, окончания обслуживания и т.п.).


    Математический анализ работы СМО существенно упрощается, если процесс этой работы - марковский. Случайный процесс называется марковским или случайным процессом без последствия , если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.


    Пример марковского процесса: система - счетчик в такси. Состояние системы в момент характеризуется числом километров (десятых долей километров), пройденных автомобилем до данного момента. Пусть в момент счетчик показывает . Вероятность того, что в момент счетчик покажет то или иное число километров (точнее, соответствующее число рублей) , зависит от , но не зависит от того, в какие моменты времени изменялись показания счетчика до момента .


    Многие процессы можно приближенно считать марковскими. Например, процесс игры в шахматы; система - группа шахматных фигур. Состояние системы характеризуется числом фигур противника, сохранившихся на доске в момент . Вероятность того, что в момент материальный перевес будет на стороне одного из противников, зависит в первую очередь от того, в каком состоянии находится система в данный момент , а не от того, когда и в какой последовательности исчезли фигуры с доски до момента .


    В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.


    При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемым графом состояний . Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния.

    Пример 1. Построить граф состояний следующего случайного процесса: устройство состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинаете» ремонт узла, продолжающийся заранее неизвестное случайное время.


    Решение. Возможные состояния системы: - оба узла исправны; - первый узел ремонтируется, второй исправен; - второй узел ремонтируется, первый исправен; - оба узла ремонтируются. Граф системы приведен на рис. 1.



    Стрелка, направленная, например, из в , означает переход системы в момент отказа первого узла, из в - переход в момент окончания ремонта этого узла.


    На графе отсутствуют стрелки из в и из в . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из в ) или одновременного окончания ремонтов двух узлов (переход из в ) можно пренебречь.


    Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей - понятием потока событий.

    Потоки событий

    Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов ЭВМ, поток покупателей и т.п.).


    Поток характеризуется интенсивностью - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.


    Поток событий называется регулярным , если события следуют одно за другим через определенные равные промежутки времени. Например, поток изделий на конвейере сборочного цеха (с постоянной скоростью движения) является регулярным.


    Поток событий называется стационарным , если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: . Например, поток автомобилей на городском проспекте не является стационарным в течение суток, но этот поток можно считать стационарным в течение суток, скажем, в часы пик. Обращаем внимание на то, что в последнем случае фактическое число проходящих автомобилей в единицу времени (например, в каждую минуту) может заметно отличаться друг от друга, но среднее их число будет постоянно и не будет зависеть от времени.


    Поток событий называется потоком без последействия , если для любых двух непересекающихся участков времени и - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последействия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).


    Поток событий называется ординарным , если вероятность попадания на малый (элементарный) участок времени двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами. Например, поток поездов, подходящих к станции, ординарен, а поток вагонов не ординарен.


    Поток событий называется простейшим (или стационарным пуассоновским ), если он одновременно стационарен, ординарен и не имеет последействия. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание. Заметим, что регулярный поток не является "простейшим", так как он обладает последействием: моменты появления событий в таком потоке жестко зафиксированы.


    Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается в качестве предельного для суммы случайных величин: при наложении (суперпозиции) достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям получается поток, близкий к простейшему с интенсивностью , равной сумме интенсивностей входящих потоков, т.е. . Рассмотрим на оси времени (рис. 1) простейший поток событий как неограниченную последовательность случайных точек.



    Можно показать, что для простейшего потока число т событий (точек), попадающих на произвольный участок времени , распределено по закону Пуассона



    для которого математическое ожидание случайной величины равно ее дисперсии: .


    В частности, вероятность того, что за время не произойдет ни одного события , равна



    Найдем распределение интервала времени между произвольными двумя соседними событиями простейшего потока.


    В соответствии с (2) вероятность того, что на участке времени длиной не появится ни одного из последующих событий, равна



    а вероятность противоположного события, т.е. функция распределения случайной величины , есть



    Плотность вероятности случайной величины есть производная ее функции распределения (рис. 3), т.е.



    Распределение, задаваемое плотностью вероятности (5) или функцией распределения (4), называется показательным (или экспоненциальным ). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины


    и обратно по величине интенсивности потока .


    Важнейшее свойство показательного распределения (присущее только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время , то это никак не влияет на закон распределения оставшейся части промежутка : он будет таким же, как и закон распределения всего промежутка .


    Другими словами, для интервала времени между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части. Это свойство показательного закона представляет собой, в сущности, другую формулировку для "отсутствия последействия" - основного свойства простейшего потока.


    Для простейшего потока с интенсивностью вероятность попадания на

    (Заметим, что эта приближенная формула, получаемая заменой функции лишь двумя первыми членами ее разложения в ряд по степеням , тем точнее, чем меньше ).

    Расчет показателей эффективности открытой одноканальной СМО с отказами. Расчет показателей эффективности открытой многоканальной СМО с отказами. Расчет показателей эффективности многоканальной СМО с ограничением на длину очереди. Расчет показателей эффективности многоканальной СМО ожиданием.

    1. Потоки заявок в СМО

    2. Законы обслуживания

    3. Критерии качества работы СМО

    4.

    5. Параметры моделей очередей. При анализе систем массового

    6. I. Модель А – модель одноканальной системы массового об­служивания с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

    7. II. Модель В – многоканальная система обслуживания.

    8. III. Модель С – модель с постоянным временем обслуживания.

    9. IV. Модель D – модель с ограниченной популяцией.

    Потоки заявок в СМО

    Потоки заявок бывают входные и выходные.
    Входной поток заявок – это временная последовательность событий на входе СМО, для которой появление события (заявки) подчиняется вероятностным (или детерминированным) законам. Если требования на обслуживание приходят в соответствие, с каким – либо графиком (например, автомобили приезжают на АЗС каждые 3 минуты) то такой поток подчиняется детерминированным (определенным) законам. Но, как правило, поступление заявок подчиняется случайным законам.
    Для описания случайных законов в теории массового обслуживания вводится в рассмотрение модель потоков событий. Потоком событий называется последовательность событий, следующих одно за другим в случайные моменты времени .
    В качестве событий могут фигурировать поступление заявок на вход СМО (на вход блока очереди), появление заявок на входе прибора обслуживания (на выходе блока очереди) и появление обслуженных заявок на выходе СМО.


    Потоки событий обладают различными свойствами, которые позволяют различать различные типы потоков. Прежде всего, потоки могут быть однородными инеоднородными.
    Однородные потоки – такие потоки, в которых поток требований обладает одинаковыми свойствами: имеют приоритет первым пришел – первым обслужен, обрабатываемые требования имеют одинаковые физические свойства.
    Неоднородные потоки – такие потоки, в которых требования обладают неодинаковыми свойствами: требования удовлетворяются по принципу приоритетности (пример, карта прерываний в ЭВМ), обрабатываемые требования имеют различные физические свойства.
    Схематично неоднородный поток событий может быть изображен следующим образом


    Соответственно можно использовать несколько моделей СМО для обслуживания неоднородных потоков: одноканальная СМО с дисциплиной очереди, учитывающей приоритеты неоднородных заявок, и многоканальная СМО с индивидуальным каналом для каждого типа заявок.
    Регулярным потоком называется поток, в котором события следуют одно за другим через одинаковые промежутки времени. Если обозначить через – моменты появления событий, причем , а через интервалы между событиями, то для регулярного потока

    Рекуррентный поток соответственно определяется как поток, для которого все функции распределения интервалов между заявками

    совпадают, то есть

    Физически рекуррентный поток представляет собой такую последовательность событий, для которой все интервалы между событиями как бы "ведут себя" одинаково, т.е. подчиняются одному и тому же закону распределения. Таким образом, можно исследовать только один какой-нибудь интервал и получить статистические характеристики, которые будут справедливы для всех остальных интервалов.
    Для характеристики потоков очень часто вводят в рассмотрение вероятность распределения числа событий в заданном интервале времени , которая определяется следующим образом:

    где – число событий, появляющихся на интервале .
    Поток без последействия характеризуется тем свойством, что для двух непересекающихся интервалов времени и , где , , , вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.


    Отсутствие последействия означает отсутствие вероятностной зависимости последующего течения процесса от предыдущего. Если имеется одноканальная СМО с временем обслуживания , то при потоке заявок без последействия на входе системы выходной поток будет с последействием, так как заявки на выходе СМО не появляются чаще чем интервал . В регулярном потоке, в котором события следуют друг за другом через определенные промежутки времени, имеется самое жесткое последействие.
    Потоком с ограниченным последействием называется такой поток, для которого интервалы между событиями независимы.
    Поток называется стационарным, если вероятность появления какого-то числа событий на интервале времени зависит только от длины этого интервала и не зависит от его расположения на оси времени. Для стационарного потока событий среднее число событий в единицу времени постоянно.
    Ординарным потоком называется такой поток, для которого вероятность попадания на данный малый отрезок времени dt двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования.
    Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности называют пуассоновским (простейшим). Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины или процессы с нормальным законом распределения в прикладной теории вероятности.
    Пуассоновский поток описывается следующей формулой:
    ,
    где – вероятность появления событий за время , – интенсивность потока.
    Интенсивностью потока называют среднее число событий, которые появляются за единицу времени.
    Для пуассоновского потока интервалы времени между заявками распределены по экспоненциальному закону

    Потоком с ограниченным последействием, для которого интервалы времени между заявками распределены по нормальному закону, называется нормальным потоком.

    Законы обслуживания

    Режим обслуживания (время обслуживания), так же как и режим поступления заявок, может быть либо постоянным, либо случайным. Во многих случаях время обслуживания подчиняется экспоненциальному распределению.
    Вероятность того, что обслуживание закончится до момента t, равна:

    где – плотность потока заявок
    Откуда плотность распределения времени обслуживания

    Дальнейшим обобщением экспоненциального закона обслуживания может служить закон распределения Эрланга, когда каждый интервал обслуживания подчиняется закону:

    где – интенсивность исходного пуассоновского потока, k – порядок потока Эрланга.

    Критерии качества работы СМО

    Эффективность работы СМО оценивается различными показателями в зависимости от цепи и типа СМО. Наибольшее распространение получили следующие:

    Абсолютная пропускная способность СМО с отказами (производительность системы) – среднее число требований, которые может обработать система.

    Относительная пропускная способность СМО – отношение среднего числа требований, обработанных системой, к среднему числу требований, поступивших на вход СМО.

    Средняя длительность простоя системы.

    Для СМО с очередью добавляются такие характеристики:
    Длина очереди, которая зависит от ряда факторов: от того, когда и сколько требований поступило в систему, сколько времени затрачено на обслуживание требований, которые поступили. Длина очереди является случайной величиной. От длины очереди зависит эффективность работы системы массового обслуживания.

    Для СМО с ограниченным ожиданием в очереди важны все перечисленные характеристики, а для систем с неограниченным ожиданием абсолютная и относительная пропускная способности СМО теряют смысл.

    На рис. 1 приведены системы обслуживания различной кон­фигурации.

    Параметры моделей очередей. При анализе систем массового обслуживания используются технические и экономические харак­теристики.

    Наиболее часто используются следующие Технические характери­стики:

    1) среднее время, которое клиент проводит в очереди;

    2) средняя длина очереди;

    3) среднее время, которое клиент проводит в системе обслужи­вания (время ожидания плюс время обслуживания);

    4) среднее число клиентов в системе обслуживания;

    5) вероятность того, что система обслуживания окажется незанятой;

    6) вероятность определенного числа клиентов в системе.

    Среди Экономических характеристик наибольший интерес пред­ставляют следующие:

    1) издержки ожидания в очереди;

    2) издержки ожидания в системе;

    3) издержки обслуживания.

    Модели систем массового обслуживания . В зависимости от со­четания приведенных выше характеристик могут рассматривать­ся различные модели систем массового обслуживания.

    Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:

    А) пуассоновское распределение вероятностей поступления заявок;

    Б) стандартное поведение клиентов;

    В) правило обслуживания FIFO (первым пришел - первым об­служен);

    Г) единственная фаза обслуживания.

    I. Модель А - модель одноканальной системы массового об­служивания М/М/1 с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

    Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:

    1. Заявки обслуживаются по принципу «первым пришел - пер­вым обслужен» (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.

    2. Появления заявок являются независимыми событиями, од­нако среднее число заявок, поступающих в единицу времени, не­изменно.

    3. Процесс поступления заявок описывается пуассоновским распределением, причем заявки поступают из неограниченного множества.

    4. Время обслуживания описывается экспоненциальным рас­пределением вероятностей.

    5. Темп обслуживания выше темпа поступления заявок.

    Пусть λ – число заявок в единицу времени;

    μ – число клиентов, обслуживаемых в единицу времени;

    n – число заявок в системе.

    Тогда система массового обслуживания описывается уравнени­ями, приведенными ниже.

    Формулы для описания системы М/М/1:

    Среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);

    Среднее число клиентов в очереди;

    Среднее время ожидания клиента в очереди;

    Характеристика загруженности системы (доля време­ни, в течение которого система занята обслуживанием);

    Вероятность отсутствия заявок в системе;

    Вероятность того, что в системе находится бо­лее чем K заявок.

    II. Модель В - многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два ка­нала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслужи­вания.

    Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращают­ся в первое освободившееся окошко для обслуживания.

    В многоканальной системе поток заявок подчиняется Пуассоновскому закону, а время обслуживания -Экспоненциальному. Приходящий первым обслуживается первым, и все каналы обслу­живания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно ис­пользовать соответствующее программное обеспечение.

    Время нахождения заявки в очереди;

    Время нахождения заявки в системе.

    III. Модель С - модель с постоянным временем обслуживания M/D/1.

    Некоторые системы имеют Постоянное, а не экспоненциально распределенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, например, на автоматической мойке автомобилей. Для модели С С постоянным темпом обслуживания значения величин Lq и Wq Вдвое меньше, чем соответствующие значения в модели А, име­ющей переменный темп обслуживания.

    Формулы, описывающие модель С:

    Средняя длина очереди;

    - среднее время ожидания в очереди;

    Среднее число клиентов в системе;

    Среднее время ожидания в системе.

    IV. Модель D - модель с ограниченной популяцией.

    Если число потенциальных клиентов системы обслуживания Ограничено, мы имеем дело со специальной моделью. Такая за­дача может возникнуть, например, если речь идет об обслужива­нии оборудования фабрики, имеющей пять станков.

    Особенность этой модели по сравнению с тремя рассмотрен­ными ранее в том, что существует Взаимозависимостьмежду длиной очереди и темпом поступления заявок.

    V. Модель Е - модель с ограниченной очередью. Модель от­личается от предыдущих тем, что число мест в очереди Ограни­чено. В этом случае заявка, прибывшая в систему, когда все ка­налы и места в очереди заняты, покидает систему необслуженной, т. е. получает отказ.

    Как частный случай модели с ограниченной очередью можно рассматривать Модель с отказами, если количество мест в очере­ди сократить до нуля.