Статистический метод в молекулярной физике распределение больцмана. Вопрос


Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа. Пусть Р давление газа на высоте h. Тогда давление на высоте h+dh будет P+dP, а разность давлений dP будет равна весу газа mg в объеме V с площадью основания S = 1 м 2 и высотой dh (V=Sdh), отнесенному к S.

Выразим плотность газа ρ через давление P из уравнения Менделеева-Клапейрона

Тогда

Проинтегрируем отдельно левую и правую части уравнения. Считая температуру постоянной T=const, получим lnP = -
, где С – постоянная интегрирования. Выражение для давления будет
Постоянную интегрирования определяют из граничного условия. Еслиh = 0, то С = Р 0 и тогда

Это уравнение носит название барометрической формулы и показывает зависимость давления газа от высоты.

Видно, что чем тяжелее молекулы и чем ниже температура, тем быстрее уменьшается давление с увеличением высоты.

Заменим в формуле давление, выразив его через концентрацию молекул из уравнений P = nkT, P 0 = n 0 kT и

где n 0 - концентрация молекул на высоте h=0;

n - концентрация молекул на высоте h≠0.

Данная формула описывает изменение концентрации молекул от высоты h в потенциальном поле земного тяготения и от температуры Т. Можно отметить две тенденции, определяющих распределение молекул по высоте:

1. Притяжение молекул к Земле (mg) стремится расположить их на поверхности Земли.

2. Тепловое движение (kT) стремится разбросать молекулы равномерно по всем высотам от 0 до .

В результате этих конкурирующих процессов распределение молекул газа по высоте имеет промежуточный вид.

Потенциальная энергия молекулы  Р =mgh. Следовательно, полученная формула представляет собой распределение молекул по значениям потенциальной энергии

Это формула функции распределения Больцмана. Здесь n 0 концентрация моле-кул в том месте, где  Р = 0, n –концентрация молекул в той точке простран-ства, где молекула обладает потенциальной энергией  p ≠ 0. Молекулы стремятся расположиться с наибольшей плотностью там, где у них минимальная потенциальная энергия

Закон Максвелла дает распределение молекул по значениям кинетической энергии, а закон Больцмана - по значениям потенциальной энергии.

Больцман доказал, что формула распределения справедлива не только в случае потенциального поля земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Контрольные вопросы

    Что такое степень свободы молекул?

    Чему равно число степеней свободы одно-, двух- и трехатомной молекул?

    Сформулируйте закон распределения энергии по степеням свободы молекул.

    Приведите выражение функции распределения молекул по скоростям.

    По каким формулам определяются среднеарифметическая, наиболее вероятная и среднеквадратичная скорости молекул?

    Каково выражение для функции распределения Больцмана по значениям потенциальной энергии?

Тесты

    чему равно число степеней свободы двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Сколько степеней свободы приходится на вращательное движение у двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Какое из приведенных выражений описывает наиболее вероятную скорость?

Одним из важнейших объектов изучения статистической физики является так называемый идеальный газ. Под этим названием подразумевают газ, взаимодействие между частицами (молекулами) которого настолько слабо, что им можно пренебречь. Физически допустимость такого пренебрежения может быть обеспечена либо малостью взаимодействия частиц при любых расстояниях между ними, либо достаточной разреженностью газа. В последнем, наиболее важном случае разреженность газа приводит к тому, что его молекулы почти всегда находятся на значительных расстояниях друг от друга, на которых силы взаимодействия уже достаточно малы.

Отсутствие взаимодействия между молекулами позволяет свести квантовомеханическую задачу об определении уровней энергии всего газа в целом к задаче об определении уровней энергии отдельной молекулы. Эти уровни мы будем обозначать посредством , где индекс k представляет собой совокупность квантовых чисел, определяющих состояние молекулы. Энергии выразятся тогда в виде сумм энергий каждой из молекул.

Надо, однако, иметь в виду, что даже при отсутствии непосредственного силового взаимодействия в квантовой механике имеет место своеобразное взаимное влияние частиц, находящихся в одинаковом квантовом состоянии (так называемые обменные эффекты). Так, если частицы подчиняются статистике Ферми, то это влияние проявляется в том, что в каждом квантовом состоянии может находиться одновременно не более одной частицы); аналогичное влияние, проявляющееся иным образом, имеет место и для частиц, подчиняющихся статистике Бозе.

Обозначим посредством число частиц в газе, находящихся в k-м квантовом состоянии; числа называют числами заполнения различных квантовых состояний.

Поставим задачу о вычислении средних значений этих чисел, причем обратимся к подробному изучению чрезвычайно важного случая, когда все числа

Физически этот случай соответствует достаточно разреженному газу. В дальнейшем будет установлен критерий, обеспечивающий выполнение этого условия, но уже сейчас укажем, что фактически оно выполняется для всех обычных молекулярных или атомных газов. Это условие нарушилось бы лишь при таких больших плотностях, при которых вещество фактически уже ни в какой мере нельзя было бы рассматривать как идеальный газ.

Условие для средних чисел заполнения означает, что в каждый момент времени в каждом квантовом состоянии фактически находится не более одной частицы. В связи с этим можно пренебрегать не только непосредственным силовым взаимодействием частиц, но и их косвенным квантовомеханическим взаимным влиянием, упомянутым выше. Это обстоятельство в свою очередь позволяет применить к отдельным молекулам формулу распределения Гиббса.

Действительно, распределение Гиббса было выведено нами для тел, являющихся относительно малыми, но в то же время макроскопическими частями каких-либо больших замкнутцх систем. Макроскопичность тел давала возможность считать их квазизамкнутыми, т. е. в известном смысле пренебречь их взаимодействием с другими частями системы. В рассматриваемом случае квазизамкнутыми являются отдельные молекулы газа, хотя они отнюдь не представляют собой макроскопических тел.

Применив к молекулам газа формулу распределения Гиббса, мы можем утверждать, что вероятность молекуле находиться в состоянии, а потому и среднее число молекул в этом состоянии, пропорциональны :

где а - постоянная, определяющаяся условием нормировки

(N - полное число частиц в газе). Распределение молекул идеального газа по различным состояниям, определяемое формулой (37,2), называется распределением Больцмана (оно было открыто Больцманом для классической статистики в 1877 г.).

Постоянный коэффициент в (37,2) может быть выражен через термодинамические величины газа. Для этого дадим еще один вывод этой формулы, основанный на применении распределения Гиббса к совокупности всех частиц газа, находящихся в данном квантовом состоянии.

Мы имеем право сделать это (даже если числа не малы), поскольку непосредственного силового взаимодействия между этими и остальными частицами (как и между всеми вообще частицами идеального газа) нет, а квантовомеханические обменные эффекты имеют место лишь для частиц, находящихся в одном и том же состоянии. Полагая в общей формуле распределения Гиббса с переменным числом частиц и приписывая индекс k величине получим распределение вероятностей различных значений в виде

В барометрической формуле в отношении M/R разделим и числитель и знаменатель на число Авогадро .

Масса одной молекулы,

Постоянная Больцмана.

Вместо Р и подставим соответственно. (см. лекцию №7), где плотность молекул на высоте h , плотность молекул на высоте .

Из барометрической формулы в результате подстановок и сокращений получим распределение концентрации молекул по высоте в поле силы тяжести Земли.

Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает (рис. 8.10), обращаясь в 0 при Т=0 (при абсолютном нуле все молекулы расположились бы на поверхности Земли). При высоких температурах n слабо убывает с высотой, так

Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии .

(*)

где плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение ; плотность молекул в том месте, где потенциальная энергия равна 0.

Больцман доказал, что распределение (*) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения .

Таким образом, закон Больцмана (*) даёт распределение частиц, находящихся в состоянии хаотического теплового движения, по значениям потенциальной энергии . (рис. 8.11)


Рис. 8.11

4. Распределение Больцмана при дискретных уровнях энергии .

Полученное Больцманом распределение относится к случаям, когда молекулы находятся во внешнем поле и их потенциальная энергия может применяться непрерывно. Больцман обобщил полученный им закон на случай распределения, зависящего от внутренней энергии молекулы.



Известно, что величина внутренней энергии молекулы (или атома) Е может принимать лишь дискретный ряд дозволенных значений . В этом случае распределение Больцмана имеет вид:

,

где число частиц в состоянии с энергией ;

Коэффициент пропорциональности, который удовлетворяет условию

,

где N – полное число частиц в рассматриваемой системе.

Тогда и в результате для случая дискретных значений энергии распределение Больцмана

Но состояние системы в этом случае термодинамически неравновесное.

5. Статистика Максвелла-Больцмана

Распределение Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от до , а координаты в пределах от x, y, z до x+dx, y+dy, z+dz , равно

где , плотность молекул в том месте пространства, где ; ; ; полная механическая энергия частицы.

Распределение Максвелла-Больцмана устанавливает распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля .

Примечание : распределение Максвелла и Больцмана являются составными частями единого распределения, называемого распределением Гиббса (этот вопрос подробно рассматривается в спецкурсах по статической физике, и мы ограничимся только упоминанием этого факта).

Вопросы для самоконтроля.

1. Дайте определение вероятности.

2. Каков смысл функции распределения?

3. Каков смысл условия нормировки?

4. Запишите формулу для определения среднего значения результатов измерения величины x с помощью функции распределения.

5. Что представляет собой распределение Максвелла?

6. Что такое функция распределения Максвелла? Каков ее физический смысл?

7. Постройте график функции распределения Максвелла и укажите характерные особенности этой функции.

8. Укажите на графике наиболее вероятную скорость . Получите выражение для . Как изменяется график при повышении температуры?

9. Получите барометрическую формулу. Что она определяет?

10. Получите зависимость концентрации молекул газа в поле силы тяжести от высоты.

11. Запишите закон распределения Больцмана а) для молекул идеального газа в поле силы тяжести; б) для частиц массой m, находящихся в роторе центрифуги, вращающейся с угловой скоростью .

12. Объясните физический смысл распределения Максвелла-Больцмана.

Лекция №9

Реальные газы

1. Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

2. Метастабильные состояния. Критическое состояние.

3. Внутренняя энергия реального газа.

4. Эффект Джоуля – Томсона. Сжижение газов и получение низких температур.

1. Силы межмолекулярного взаимодействия в газах

Многие реальные газы подчиняются законам идеальных газов при нормальных условиях . Воздух можно считать идеальным до давлений ~ 10 атм . При повышении давления отклонения от идеальности (отклонение от состояния, описываемого уравнением Менделеева - Клайперона) возрастают и при p=1000 атм достигают более 100%.

и притяжения , а F – их результирующая . Силы отталкивания считаются положительными , а силы взаимного притяжения – отрицательными . Соответствующая качественная кривая зависимости энергии взаимодействия молекул от расстояния r между центрами молекул приведена на

рис. 9.1б). На малых расстояниях молекулы отталкиваются, на больших притягиваются. Быстро возрастающие на малых расстояниях силы отталкивания означают грубо говоря, что молекулы как бы занимают некоторый определённый объём, дальше которого газ не может быть сжат .

закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова

Выражение (45.2) называется барометрической формулой. Она позволяет найти атмос­ферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормаль­ным, то выражение (45.2) может быть записано в виде

(45.3)

где р - давление на высоте h.

Барометрическую формулу (45.3) можно преобразовать, если воспользоваться вы­ражением (42.6) p = nkT :

где n – концентрация молекул на высоте h , n 0 – то же, на высоте h = 0. Так как M= m 0 N A (N A – постоянная Авогадро, т 0 масса одной молекулы), a R = kN A , то

(45.4)

где m 0 gh =П - потенциальная энергия молекулы в поле тяготения, т. е.

Выражение (45.5) называется распределением Больцмана для внешнего потенциаль­ного поля. Из вето следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом вне­шнем потенциальном поле, а не только в поле сил тяжести.

24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.

На среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится Это есть закон Больцмана о равномерном распределении средней кинетической энергии по степеням свободы. Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий). Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражениемКинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с Ek дается соотношениемИз уравнений (6) и (7) можно определить значение средне-квадратичной скорости молекулВнутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Отсюда вытекает закон Джоуля, подтверждаемый многочисленными экспериментами. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия U тела зависит наряду с температурой T также и от объема V: U = U (T, V). Принято говорить, что внутренняя энергия является функцией состояния.

Барометрическая формула - зависимость давления или плотности газа от высоты в поле тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне

(), - молярная масса газа, - газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле. При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе.

Распределение Больцмана - это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц n i с полной энергией E i равно:

n i =A ω i e ­E i /Kt (1)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию E i можно считать состоящей из кинетической энергии E iкин частицы (молекулы или атома), её внутренней энергии E iвн (напр., энергии возбуждения электронов) и потенциальной энергии E i , пот во внешнем поле, зависящей от положения частицы в пространстве:

E i = E i, кин + E i, вн + E i, пот (2)

Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения

E i,вн и влиянием внешних полей E i,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. E i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различныхуровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:

n 2 /n 1 = (ω 2 /ω 1) e -(E 2 -E 1)/kT (3) (ф-ла Больцмана).

Разность энергий E 2 -E 1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2 10 -9 .

Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства.